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Poisson Models

Part III deals with statistical modelling and inference for point pattern data, starting in this chapter

with Poisson point process models.

9.1 Introduction

Poisson point processes were introduced briefly in Chapter 5. In this chapter we show how to

use them as statistical models for point pattern data. We show how to formulate a Poisson model

appropriate to the data, fit the model to the data, and interpret the results. Validation of a fitted

model is discussed in chapters 10 and 11.

The key property of a Poisson process is that the random points are independent of each other.

This property greatly simplifies the statistical analysis, and gives access to a wide variety of powerful

statistical techniques.

A Poisson process is completely described by its intensity function λ (u). Statistical models of

Poisson point processes are easy to build: they are simply models of the intensity, that is, a model

is just an equation stating the form of the function λ (u). This also means that there is a close

relationship between techniques for estimating an intensity function (Chapter 6) and methods for

fitting a Poisson point process model.

Why Poisson?

The huge literature on spatial analysis contains many other techniques for analysing spatial point

pattern data. Many of these techniques appear at first sight to have nothing to do with Poisson point

processes — and even seem to have nothing to do with point processes at all.

In fact, several popular techniques are equivalent to fitting a Poisson point process model with a

specific form of the intensity — namely, where the intensity is a loglinear function of the covariates.

Such techniques include logistic regression [4, 658, 604, 326, 397, 116] and maximum entropy

[248, 246, 252, 546].

Logistic regression is commonly used in GIS to predict the probability of occurrence of mineral

deposits [4, 152], archaeological finds [604, 397], landslides [153, 288], and other events which can

be treated as points at the scale of interest. The study region is divided into pixels; in each pixel the

presence or absence of any data points is recorded; then logistic regression [458, 240, 344] is used

to predict the probability of the presence of a point as a function of predictor variables.

Logistic regression implicitly assumes that the presence/absence values for different pixels are

independent [458, 240, 344]. This implies that the underlying point process is Poisson (as explained

in Chapter 5). Furthermore, the logistic relationship implies that the intensity of the Poisson process

is a loglinear function of the covariates and the parameters. Thus, logistic regression is essentially

equivalent to fitting a Poisson point process model with loglinear intensity [34, 691].

The principle of maximum entropy [248] is often used in ecology, for example, to study the

influence of habitat variables on the spatial distribution of animals or plants [246, 252, 546]. Con-
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ceptually we consider all possible spatial distributions, and find the spatial distribution which max-

imises a quantity called entropy, subject to constraints implied by the observed data. Surprisingly,

the solution is a probability density which is a loglinear function of the covariates. An analogy

could be drawn with the stretching of a string: a string may take on any shape, but if we demand

that the string be stretched as tight as possible, it will take up a straight line. Thus, again, this anal-

ysis principle is equivalent to fitting a Poisson point process model with loglinear intensity [568].

Advantages of statistical modelling

Statistical modelling is a much more powerful way to analyse data than simply computing summary

statistics. Formulating a statistical model, and fitting it to the data, allows us to adjust for effects

that might otherwise distort the analysis (such as uneven distribution of survey effort, and spatially

varying population density) by including terms that represent these effects. By fitting different

models that include or omit a particular term, and comparing the models, we can decide which

variables have a statistically significant influence on the intensity.

A great advantage of statistical modelling is that the assumptions of the analysis are openly

stated, rather than implicitly imposed. All model assumptions are ‘on the table’ and are amenable

to criticism. Chapter 11 provides tools for criticising each individual model assumption of a Poisson

point process model, and for identifying weaknesses of the data analysis.

9.2 Poisson point process models

Poisson processes were introduced briefly in Sections 5.3 and 5.4 of Chapter 5. Here we discuss

using Poisson processes as statistical models for data analysis of spatial point patterns.

9.2.1 Characteristic Properties of the Poisson Process

We start with a detailed statement of the characteristic properties of the Poisson point process. Apart

from clarifying our understanding of the model, this is a useful checklist of properties that need to

be verified before the analyst can be satisfied that a real point pattern dataset is well described by a

Poisson point process.

Homogeneous Poisson process (CSR)

The homogeneous Poisson process with intensity λ > 0 (also called ‘complete spatial randomness’,

CSR) has the properties that

(PP1) Poisson counts: the number n(X∩B) of points falling in any region B has a Poisson distri-

bution (see page 135);

(PP2) homogeneous intensity: the expected number of points falling in B is E[n(X∩B)] = λ · |B|;

(PP3) independence: if B1,B2, . . . are disjoint regions of space then n(X∩B1), n(X∩B2), . . . are
independent random variables;

(PP4) conditional property: given that n(X∩B) = n, the n points are independent and uniformly

distributed in B.

We are justified in calling λ the ‘intensity’ because (PP2) implies that this point process has

homogeneous intensity λ in the sense of Section 6.2. The intensity parameter λ has dimensions
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length−2 and determines the average number of points per unit area. Scaling properties of λ (for

example, the effect of changing the unit of length) are discussed in Section 6.2. Any value can be

specified for λ , as long as it is non-negative and finite. If λ = 0 then all realisations of the point

process are empty.

The properties (PP1)–(PP4) provide the basis for many statistical techniques. For example,

in quadrat counting, (PP3) implies that the counts in different quadrats are independent random

variables; (PP1) implies that these counts have Poisson distributions; and (PP2) implies that the

mean values of the counts are proportional to the areas of the quadrats. If the quadrats have equal

area, then the quadrat counts are Poisson random variables with equal mean values, so they are

identically distributed. This justifies the use of the χ2 test.

When we need to check whether a point process is CSR, the most important properties to check

are independence (PP3) and homogeneity (PP2). As explained in Section 5.3, the other properties

follow logically from these, under reasonable conditions.1 However, if any one of these properties

does not hold, then the process is not CSR. Statistical methods for checking CSR can focus, for

example, on detecting a departure from the Poisson distribution (PP1) or from conditional indepen-

dence and uniformity (PP4).

Figure 9.1. Examples of intensity functions (top) and simulated realisations (bottom) for Poisson

processes.

Inhomogeneous Poisson process

The inhomogeneous Poisson process with intensity function λ (u), u ∈ R
2, is a modification of the

homogeneous Poisson process, in which properties (PP2) and (PP4) above are replaced by

(PP2′): the number n(X∩B) of points falling in a region B has expected value

E[n(X∩B)] =
∫

B
λ (u)du. (9.1)

1The reasonable condition is that the probability of more than one random point falling in a region B, divided by the area

of B, falls to zero as the area of B goes to zero. This excludes coincident points and fractal-like behaviour.
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(PP4′): given that n(X∩ B) = n, the n points are independent and identically distributed, with

common probability density

f (u) =
λ (u)

I
(9.2)

where I =
∫

B λ (u)du.

Again we are justified in calling λ (u) the ‘intensity function’ because, by virtue of (PP2′), it is

the intensity function in the sense of Section 6.3. Its values have dimension length−2 and determine

the spatially varying intensity (average number of points per unit area).

The intensity function encapsulates both the abundance of points (by equation (9.1)) and the

spatial distribution of individual point locations (by equation (9.2)).

Any function λ (u) can be used, as long as its values are non-negative and integrable (the right-

hand side of (9.1) must be finite).

9.2.2 Modelling scenarios giving rise to a Poisson process

There are many realistic models of physical processes which give rise to a Poisson point process,

because the Poisson limit law is so widely applicable. We sketch some common examples below.

Random trials on a very fine grid

Imagine a radioactive material, consisting of N atoms arranged in a regular grid, where N is very

large, and the spacing between atoms is tiny. In a specified time interval, each atom has a very

small probability p of undergoing random decay. Decay events of different atoms are independent.

The total number of decay events in the specified period is the number of successes in N trials with

success probability p. Since N is large and p is small, the number of decay events has a Poisson

distribution (to a very good approximation) and the locations of the decay events approximately

constitute a Poisson point process.

Independent random thinning

Suppose that there is some initial population represented by a point process X (not assumed to be

a Poisson process) and that each point of X is either deleted or retained, independently of other

points. Suppose X has intensity function β (u) and the probability of retaining a point at the location
u is p(u). The resulting process Y of retained points has intensity λ (u) = p(u)β (u). If the original
population density β (u) is large and the retention probabilities p(u) are small, then the resulting

process Y is approximately an inhomogeneous Poisson process.

A model of plant propagation could assume that seeds are randomly dispersed according to some

point process, and seeds randomly germinate or do not germinate, independently of each other, with

a germination probability that depends on the local soil conditions. The resulting pattern of plants

is well described by an inhomogeneous Poisson process.

In accident research, some models describe a population of ‘near-accidents’ or ‘potential acci-

dents’, each of which has a small probability of progressing to a real accident. The thinning principle

says that the real accidents are well described by an inhomogeneous Poisson process. Similarly in a

galaxy survey of the distant universe, we may fail to detect some individual galaxies. The detected

locations of very faint galaxies could be described by an inhomogeneous Poisson process.

In spatial epidemiology, X could represent the human population at risk of a rare disease, and

Y would be the disease cases. The key assumption is that a person’s disease status is statistically

independent of other people.
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Random strewing

Suppose a large number N of points is scattered randomly in a large region D according to a bi-

nomial point process. That is, each point is uniformly distributed over D, and different points are

independent. If this random pattern is observed within a subregion W , where D is much larger than

W , then the observed pattern is approximately a Poisson point process inside W .

Random displacement

Again we imagine an initial population represented by any point processX. Suppose that each point

in X is subjected to a random displacement, independently of other points. A point at the original

location xi is moved to the new location yi = xi +Vi where Vi is a random vector. Assume that

V1,V2, . . . are independent random vectors. Then under reasonable conditions, the resulting point

process Y is approximately an inhomogeneous Poisson process.

Spatial birth-and-death process

Consider a forest which evolves over time. In each small interval of time ∆t, each existing tree has

probability m∆t of dying, independently of other trees, where m is the ‘mortality rate’ per tree per

unit time. In the same time interval, in any small region of area ∆a, a new tree germinates with

probability g∆a∆t, independently of any existing trees, where g is the ‘germination rate’ per unit

area per unit time. No matter what the initial state of the forest, over long time scales this ‘spatial

birth-and-death process’ reaches an equilibrium in which any snapshot of the forest (the pattern of

trees in existence at a fixed time) is a realisation of a Poisson process with intensity g/m.

9.2.3 Common parametric models of intensity

0
.5

1
1
.5

2

Figure 9.2. Intensity (Left) and simulated realisation (Right) of the Poisson process with a different,

homogeneous intensity in each Australian state and territory. Intensity is proportional to average

population density within the state or territory.

The intensity function λ (u) of the Poisson process can be assumed to take any form that is

appropriate to the context, so long as the intensity values are non-negative and the integral of the

intensity over the observation window is finite. Some common models of the intensity function, and

their interpretation, are discussed below.

homogeneous intensity: the Poisson process with constant intensity λ (u) ≡ λ is the simplest

model, called the homogeneous Poisson process or ‘complete spatial randomness’ (CSR).

homogeneous in different regions: Space is partitioned into non-overlapping regions B1, . . . ,Bm.

Within region B j , the process is Poisson with intensity β j, where β1, . . . ,βm are parameters of
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the model. Then the overall process is an inhomogeneous Poisson process where the intensity

function λ (u) takes the value β j when u is in region B j . See Figure 9.2.

intensity proportional to baseline: A simple model is

λ (u) = θb(u) (9.3)

where b(u) is a known function (‘baseline’) and θ is an unknown parameter that must be es-

timated. If the baseline b(u) represents the spatially varying density of a population, and we

assume that each member of the population has equal chance θ of contracting a rare disease, then

the cases of the disease will form a Poisson process with intensity (9.3), the ‘constant risk’ model.

Modelling scenarios which involve random thinning often lead to a model of this form.

exponential function of covariate: A very important model is

λ (u) = κeβZ(u) = exp(α +βZ(u)) (9.4)

where Z(u) is a spatial covariate, and α ,β ,κ are parameters to be estimated. This is the model that

is fitted in basic applications of logistic regression and maximum entropy. An important example

is in prospectivity analysis, where Z(u) is the distance from location u to the nearest geological

fault. The parameter κ = eα gives the intensity at locations where Z(u) ≈ 0 (i.e. locations close

to a geological fault), while the intensity changes by a factor eβ for every 1 unit of distance

away from the faults. The Berman-Lawson-Waller test (Section 10.3.5) for a covariate effect is

equivalent to testing whether β = 0 in this model.

raised incidence model: A combination of the last two models is

λ (u) = b(u)eα+βZ(u) = b(u)exp(α +βZ(u)) (9.5)

where b(u) is a known baseline function and Z(u) is a spatial covariate. This model expresses the

covariate effect relative to the baseline b(u). For example in spatial epidemiology, b(u) could be

the spatially varying population density, and the term exp(α +βZ(u)) would then be the disease

risk per person, depending on the value of Z. The exponential term could be replaced by something

more complicated [224]. Modelling scenarios that involve independent random thinning often

lead to models of this kind.

loglinear model: Embracing all of the models listed above is the general loglinear model

λθ(u) = exp(B(u)+θ⊤Z(u)) = exp(B(u)+θ1Z1(u)+θ2Z2(u)+ . . .+θpZp(u)) (9.6)

where B(u) and Z1(u), . . . ,Zp(u) are known functions, θ1, . . . ,θp are parameters to be estimated,

and we write Z(u) = (Z1(u), . . . ,Zp(u)) for the vector-valued function. This was termed a modu-

lated Poisson process by Cox [177].

As this sequence of models shows, we often build models for the intensity by multiplying to-

gether several terms which represent different effects. The logarithm of intensity is a sum of terms

representing different effects. We can even include a term in the model that accounts for the proba-

bility of observing a point (e.g., related to the survey effort).

There are plausible modelling assumptions that give rise to Poisson point process models of

either additive or multiplicative form. A model of the additive form has an intensity function

λ (u) = γ1(u)+ γ2(u)+ . . .

where the terms γk(u) are interpretable as the intensities of Poisson processes of points associated
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with different ‘origins’ or ‘causes’, that were superimposed to yield the observed point process. A

model of multiplicative form has

λ (u) = exp(A(u)+B1(u)+B2(u)+ . . .)

where the first term A(u) is a baseline intensity (on a log scale) and the subsequent terms B1(u),
B2(u), . . . can be interpreted as ‘thinning’ or ‘modulation’ effects.

The multiplicative form is more convenient for inference, and corresponds directly to the canon-

ical choice of the log link in a Poisson Generalised Linear Model. Inference for models of the addi-

tive form is more difficult as it effectively leads to a missing value problem, the missing information

being the attribution of each observed point to one of the component Poisson processes.

9.3 Fitting Poisson models in spatstat

Fitting a statistical model to data means choosing values for the parameters governing the model,

so that the model fits the data as well as possible. For example, to fit a line y = ax+ b through a

scatter of data points, we find the values of the parameters a (slope) and b (intercept) that give the

best-fitting line.

To fit a Poisson point process model to a point pattern dataset, we would specify the form of

the intensity function — perhaps using one of the common models described above — and find the

values of the parameters which best fit the point pattern dataset. The definition of ‘best fit’ and the

technical details of model-fitting are described in Sections 9.7–9.10. This section explains how to

use spatstat to fit Poisson models to point pattern data in practice.

9.3.1 The ppm function

Syntax

Fitting a Poisson point process model to a point pattern dataset is performed in spatstat by the

function ppm (for point process model). This is closely analogous to the standard model fitting

functions in R such as lm (for fitting linear models) and glm (for fitting generalized linear models).

The essential syntax for specifying a Poisson point process model to be fitted by ppm is

ppm(X

~

trend, ...)

where the first argument ‘X
~

trend’ is a formula in the R language (Section 2.1.10).

The left-hand side of the formula gives the name of the point pattern dataset X. Alternatively the

left-hand side may be an expression which can be evaluated to yield a point pattern.

The right-hand side of the model formula specifies the form of the logarithm of the intensity

function for the model. Thus, any loglinear intensity model (9.6) can be fitted.2

Simplest example

The simplest possible model for a Poisson planar point process is the constant intensity or homo-

geneous model, equivalent to complete spatial randomness. A call to ppm to fit this model employs

the simplest possible formula, X
~

1. We illustrate this using the Beilschmiedia forest data (Fig-

ure 1.10) available in spatstat as the "ppp" object bei.

2Fitting Poisson models which are not loglinear is discussed in Section 9.12.
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> fit <- ppm(bei

~

1)

> fit

Stationary Poisson proess

Intensity: 0.007208

Estimate S.E. CI95.lo CI95.hi Ztest Zval

log(lambda) -4.933 0.01666 -4.965 -4.9 *** -296.1

The result of ppm is a fitted point process model, an object belonging to the class "ppm". There are

many facilities for handling such objects. For instance there is a print method print.ppm, which

produced the output above. This output tells us that the fitted intensity was λ = 0.007208 trees

per square metre. For the logarithm of the intensity, the output gives an estimate, a standard error,

and a 95% confidence interval. The fitted intensity can be recovered from this line of output by

exp(-4.933) = 0.007208.

Variables in a formula

A ‘variable name’ in a formula is a name that plays the role of a variable rather than a function. For

example, in the formula Y
~

f(X), the symbols X and Y are recognised by R as playing the role of

‘variables’, while the symbol f is recognised as playing the role of a function.

In a call to ppm of the form

ppm(X

~

trend)

all the variable names appearing in the formula should be the names of existing objects in the R

session. An alternative is to use the form

ppm(X

~

trend, ..., data)

where the argument data is a list containing data needed to fit the model. In this case, for each

variable name in the formula, ppm will first try to find a matching entry in the list data; if it is not

found, then ppm will look for existing objects in the R session.

The left-hand side of the model formula should be either the name of a point pattern, or an

expression which can be evaluated to yield a point pattern. On the left side of the formula, mathe-

matical operators such as +, -, *, /, and ^ have their usual mathematical meaning.

The right-hand side of the model formula is an expression involving the names of spatial covari-

ates which affect the intensity of the point process. On the right-hand side of a model formula, the

operators +, -, *, /, and ^ have a special interpretation: they are model operators, which are used to

combine terms in a model, as explained below.

The variable names x and y are reserved names which represent the Cartesian coordinates. Any

other variable name in the formula should match the name of an existing object in the R session, or

the name of an entry in the argument data if it is given. Each object should be either (a) a pixel

image (object of class "im") giving the values of a spatial covariate at a fine grid of locations; (b)

a function which can be evaluated at any location (x,y) to obtain the value of the spatial covariate.

It should be a funtion(x, y, ...) in the R language; (c) a window (object of class "owin")

which will be interpreted as a logical variable which is TRUE inside the window and FALSE outside

it; (d) a tessellation (object of class "tess") which will be interpreted as a factor covariate. For

each spatial location, the factor value indicates which tile of the tessellation contains the location in

question; or (e) a single number, indicating a covariate that is constant in this dataset.

In what follows we explain how to use the ppm function and elaborate on the use of formulae in-

troduced in Section 2.1.10. We illustrate the ideas by examples using point pattern datasets supplied

with the spatstat package.
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9.3.2 Models with a single numerical covariate

Recall that the interpretation of a formula depends on the types of variables involved: for example,

numerical variables and categorical variables are interpreted differently. We start by dealing with

models involving a single numerical covariate and proceed from there to more complicated models.

Given a numerical covariate (predictor) Z, say, we could use a formula such as X
~

Z to specify the

model. This formula indicates that the intensity is a loglinear function of Z as given by (9.4).

9.3.2.1 Analysis of Beilschmedia data

The data set bei installed in spatstat is a point pattern giving the locations of Beilschmiedia trees.

Covariate data are supplied in a separate object bei.extra, which is a list with two entries, elev

and grad, which are pixel images of values of the terrain elevation and terrain slope, respectively.

See Section 6.5.3, page 176 and Section 1.1.4.

> bei.extra

List of pixel images

elev:

real-valued pixel image

101 x 201 pixel array (ny, nx)

enlosing retangle: [-2.5, 1002℄ x [-2.5, 502.5℄ metres

grad:

real-valued pixel image

101 x 201 pixel array (ny, nx)

enlosing retangle: [-2.5, 1002℄ x [-2.5, 502.5℄ metres

The following command fits a Poisson point process model in which the intensity of Beilschmiedia

trees is a loglinear function of terrain slope:

> fit <- ppm(bei

~

grad, data=bei.extra)

> fit

Nonstationary Poisson proess

Log intensity:

~

grad

Fitted trend oeffiients:

(Interept) grad

-5.391 5.022

The model fitted by the commands above is a Poisson point process with intensity

λ (u) = exp(β0+β1S(u)) (9.7)

where S(u) is the terrain slope at location u. The argument to the exp function (in this case β0+
β1S(u)) is referred to as the ‘linear predictor’. The component β1S(u) is called the ‘effect’ of the

covariate S.

The printout above3 includes the fitted coefficients marked by the labels "(Interept)" and

"grad". These are the maximum likelihood estimates of β0 and β1, respectively, the coefficients of

the linear predictor; so the fitted model is

λ (u) = exp(−5.391+5.022S(u)). (9.8)

These results tell us that the estimated intensity of Beilschmiedia trees on a level surface (slope

S = 0) is about exp(−5.391) = 0.004559 trees per square metre, or 45.59 trees per hectare, and

3To save space on the printed page, we have set options(digits=4) so that numbers are printed to four significant

digits for the rest of this chapter. We have also set spatstat.options(terse=2) to shorten the output.
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would increase by a factor of exp(5.022) = 151.7 if the slope increased to 1.0. The largest slope

value in the data is about 0.3, at which stage the predicted intensity has risen by a factor of exp(0.3×
5.022) = 4.511, that is, more than quadrupled from its value on a level surface.

Although it is possible to read off the fitted model from the printout and calculate intensity levels

for various values of the predictors, this can be tedious, and becomes intricate when the model is

more complicated. The generic R command predit (explained in Section 9.4.3) has a method

for point process models (class "ppm"), which can be used to calculate fitted intensities and other

properties of the model. In this simple model, the fitted intensity can also be plotted as a function

of a covariate (in the current example, the covariate grad) using the spatstat utility effetfun,

as shown in the left panel of Figure 9.3.

0.00 0.05 0.10 0.15 0.20 0.25

0
.0
0
5

0
.0
1
0

0
.0
1
5

grad

λ
(g

r
a

d
)

0.00 0.05 0.10 0.15 0.20 0.25

0
.0
0
5

0
.0
1
0

0
.0
1
5

grad

λ
(g

r
a

d
)

Figure 9.3. Fitted intensity of Beilschmiedia trees as a function of slope. Solid line:

maximum likelihood estimate. Shading: pointwise 95% confidence interval. Generated by

plot(effetfun(fit, "grad", se.fit=TRUE)). Left: fit is a "ppm" object containing the

loglinear model (9.7). Right: ode is a "ppm" object containing the log-quadratic model (9.9).

It should be clearly understood that the formula bei
~

grad does not represent a flexible model

in which the abundance of trees depends, in some unspecified way, on the terrain slope. On the

contrary, the dependence is very tightly specified: the formula bei

~

grad corresponds to the

loglinear relationship (9.7), that is, it corresponds to assuming intensity is exponentially increasing

or decreasing as a function of terrain slope.

If a loglinear relationship is not an appropriate assumption, but the intensity is believed to de-

pend on terrain slope somehow, several strategies are available.

One strategy is to transform the slope values and fit a loglinear relationship to the transformed

values. Transformations of the original covariates can be specified directly in the model formula.

For example, the covariate grad gives the gradient as the tangent of the angle of inclination (vertical

elevation divided by horizontal displacement) so that a gradient of 1.0 corresponds to a 45-degree

incline. If we think it is more appropriate to use the angle of inclination as the covariate in the

loglinear model, we can convert the gradient values to angles using the arctangent, simply by typing

> ppm(bei

~

atan(grad), data=bei.extra)

Any mathematical function can appear in a model formula. However, care is required with expres-

sions that involve the symbols +, -, *, /, and ^, which have special syntactic meanings in a formula,

except inside a function call.
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For example, atan calculates angles in radians; to convert them to degrees, we would need to

multiply by 180/π , so the covariate should be atan(grad) * 180/pi. To prevent the mathemat-

ical symbols * and / from being interpreted as model formula operators, this expression should be

enclosed inside the function I (for ‘identity’):

> ppm(bei

~

I(atan(grad) * 180/pi), data=bei.extra)

The function I returns its argument unchanged, and the rules for interpreting a formula ensure that

the expression inside the parentheses is evaluated using the usual mathematical operations. The

command above fits a loglinear model depending on the angle of inclination, expressed in degrees.

It may be neater to write a separate R function which can then appear in the model formula:

> degrees <- funtion(x) { x * 180/pi }

> ppm(bei

~

degrees(atan(grad)), data=bei.extra)

Another strategy is to replace the first-order function in (9.7) by a quadratic function,

λ (u) = exp(β0+β1S(u)+β2S(u)2), (9.9)

which results in a model which is log-quadratic as a function of slope. Here there are three parame-

ters, β0,β1, and β2, to be estimated. This model can be fitted by specifying the slope and slope^2

terms in the model formula:

> ppm(bei

~

grad + I(grad^2), data=bei.extra)

Nonstationary Poisson proess

Log intensity:

~

grad + I(grad^2)

Fitted trend oeffiients:

(Interept) grad I(grad^2)

-5.987 18.745 -55.602

An advantage of this approach is that there is a formal mechanism for deciding (in statistical terms)

whether the grad^2 term is needed, namely a test of the null hypothesis H0 : β2 = 0. We discuss

this in Section 9.4. Higher-order polynomials can be fitted in the same way.

The command effetfun can be used to visualise the fitted effect of a covariate: in this context

effetfun(fit, "grad") would show the combined effect (linear and quadratic terms together)

of the slope variable as shown in the right panel of Figure 9.3.

From a theoretical viewpoint, all the models fitted above are ‘loglinear’ models, of the gen-

eral form (9.6). It is useful to distinguish between ‘original covariates’ (e.g., grad in the current

example) and ‘canonical covariates’ (the variables Z j which appear in the loglinear model (9.6)).

Canonical covariates may be transformations and combinations of the original covariates which

were provided in the dataset.

Table 9.1 lists some of the common terms appearing in model formulae.

9.3.2.2 Murchison gold data

We continue to illustrate models involving a single numerical covariate.

The Murchison geological survey data shown in Figure 9.4 record the spatial locations of gold

deposits and associated geological features in the Murchison area of Western Australia. They are

extracted from a regional survey (scale 1:500,000) of the Murchison area made by the Geological

Survey of Western Australia [693]. The features recorded are the known locations of gold deposits

(point pattern gold); the known or inferred locations of geological faults (line segment pattern

faults); and the region of greenstone outcrop (window greenstone). The study region is con-

tained in a 330×400 kilometre rectangle. At this scale, gold deposits are point-like, i.e. their spatial

extent is negligible. Gold deposits are strongly associated with greenstone bedrock and with faults,
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TERM MEANING

(age > 40) logical covariate: TRUE if age exceeds 40
ut(age, 3) factor covariate: age classified into 3 bands
I(age^2) numerical covariate: age squared
polynom(age, 3) cubic polynomial function of age
bs(age, 5) smooth function of age
1 constant term (intercept)
-1 remove intercept term
+0 remove intercept term

Table 9.1. Common terms in model formulae, assuming age is a numerical covariate. (Note: bs

requires the splines package.)

but the geology is of course three-dimensional, and the survey data are a two-dimensional projec-

tion. The survey may not have detected all existing faults, because they are usually not observed

directly; they are observed in magnetic field surveys or geologically inferred from discontinuities in

the rock sequence.

These data were analysed in [269, 134]; see also [298, 386]. The main aim is to predict the

intensity of the point pattern of gold deposits from the more easily observable fault pattern. To be

precise, the aim is to use the observed pattern of faults to specify zones of high ‘prospectivity’ to be

explored for gold. See [116, 139] for general background.

First we rescale the data to kilometres:

> mur <- solapply(murhison, resale, s=1000, unitname="km")

The full dataset is shown in Figure 9.4, generated using plot(as.layered(mur)), and a detail in

the upper right corner is shown in Figure 9.5.

A common model for such data is a Poisson process with intensity which is a loglinear function

of distance to the nearest fault,

λ (u) = exp(β0+β1d(u)), (9.10)

where β0,β1 are parameters and d(u) is the distance from location u to the nearest geological fault.

This is equivalent to the model customarily fitted in GIS software by logistic regression of presence-

absence indicators on distance to nearest fault.

We compute the distance covariate d(u) using distfun (Section 6.6.4) which has the advantage
that distances will be computed exactly by analytic geometry. A less accurate alternative would be

to compute the distance values at a grid of pixel locations using distmap.

> dfault <- with(mur,distfun(faults))

Next we fit the loglinear model (9.10):

> fit <- ppm(gold

~

dfault, data=mur)

> fit

Nonstationary Poisson proess

Log intensity:

~

dfault

Fitted trend oeffiients:

(Interept) dfault

-4.3413 -0.2608

The fitted model is

λ (u) = exp(−4.341−0.2608d(u)). (9.11)

That is, the estimated intensity of gold deposits in the immediate vicinity of a geological fault
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Figure 9.4. Murchison geological survey data. Gold deposits (+), geological faults (—), and

greenstone outcrop (grey shading) in a survey region about 200 by 300 km across.
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Figure 9.5. Detail of Murchison geological survey data in a 70 by 40 km region near the abandoned

town of Reedy. Gold deposits (+), faults (solid lines), and greenstone outcrop (grey shading).

is about exp(−4.341) = 0.01302 deposits per square kilometre or 1.302 deposits per 100 square

kilometres, and decreases by a factor of exp(−0.2608) = 0.7704 for every additional kilometre

away from a fault. At a distance of 10 kilometres, the intensity has fallen by a factor of exp(10×
(−0.2608)) = 0.07368 to exp(−4.341+ 10× (−0.2608)) = 0.0009596 deposits per square kilo-

metre or 0.09596 deposits per 100 square kilometres. Figure 9.6 shows the effect of the distance

covariate on the intensity function.
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Figure 9.6. Fitted intensity of Murchison gold deposits as a function of distance to the near-

est fault, assuming it is a loglinear function of distance (equivalent to logistic regression). Solid

line: maximum likelihood estimate. Shading: pointwise 95% confidence interval. Generated by

plot(effetfun(fit, "dfault", se.fit=TRUE)).

We caution that, by fitting the model with formula gold
~

dfault using ppm or equivalently

using logistic regression, we have not fitted a highly flexible model in which the abundance of

deposits depends, in some unspecified way, on the distance to the nearest fault. Rather, the very

specific relationship (9.10) has been fitted. To fit more flexible models, we need to modify the

model formula, as discussed below.

In prospectivity analysis it may or may not be desirable to fit any explicit relationship between
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deposit abundance and covariates such as distance to the nearest fault. Often the objective is simply

to select a distance threshold, so as to delimit the area which is considered highly prospective (high

predicted intensity) for the mineral. The ROC curve (Section 6.7.3) is more relevant to this exercise.

However, if credible models can be fitted, they contain much more valuable predictive information.

9.3.3 Models with a logical covariate

A logical covariate takes the values TRUE and FALSE. Logical covariates can arise in many ways, as

we shall see in this chapter.

The Murchison data include the polygonal boundary of greenstone outcrop, given as a window

called greenstone. Setting aside the information about geological faults for a moment, we could

fit a simple Poisson model in which the intensity of gold deposits is constant inside the greenstone,

and constant outside the greenstone, but with different intensity values inside and outside.

> ppm(gold

~

greenstone, data=mur)

Nonstationary Poisson proess

Log intensity:

~

greenstone

Fitted trend oeffiients:

(Interept) greenstoneTRUE

-8.103 3.980

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Interept) -8.103 0.1667 -8.430 -7.777 *** -48.62

greenstoneTRUE 3.980 0.1798 3.628 4.333 *** 22.13

The function ppm recognises that greenstone is a spatial window, and interprets it as a covariate

with logical values, equal to TRUE inside the greenstone outcrop and FALSE outside.

Since the model formula does not explicitly exclude a constant term (‘intercept’), this term is

assumed to be present. The model fitted is

λ (u) = exp(α +βG(u)) (9.12)

where G is the indicator covariate for the greenstone, taking the value G(u) = 1 if the location

u is inside the greenstone outcrop, and G(u) = 0 if it is outside. The printed output shows the

estimates for the parameters α (labelled Interept) and β (labelled greenstoneTRUE) as−8.103
and 3.98 respectively. The estimated intensities are λout = exp(−8.103) = 0.0003026 outside the

greenstone outcrop and λin = exp(−8.103+3.98) = 0.0162 inside. The last few lines of output give

the estimates of α and β together with estimates of standard error, 95% confidence intervals, and a

report that the coefficient β is significantly different from 0.

Slightly different output is obtained with the command

> ppm(gold

~

greenstone - 1, data=mur)

Nonstationary Poisson proess

Log intensity:

~

greenstone - 1

Fitted trend oeffiients:

greenstoneFALSE greenstoneTRUE

-8.103 -4.123

Estimate S.E. CI95.lo CI95.hi Ztest Zval

greenstoneFALSE -8.103 0.16667 -8.430 -7.777 *** -48.62

greenstoneTRUE -4.123 0.06757 -4.255 -3.990 *** -61.01
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The model formula now includes -1 forbidding the use of a constant term (‘intercept’). The model

fitted here is

λ (u) = exp(γGout(u)+δGin(u)) (9.13)

where Gin(u) = G(u) is the indicator of the greenstone as before, and Gout(u) = 1−G(u) is the indi-
cator of the complement of the greenstone. The estimates of γ and δ are−8.103 and−4.123 respec-
tively. The estimates of the intensities are λout = exp(−8.103) = 0.0003026 outside the greenstone

outcrop and λin = exp(−4.123) = 0.0162 inside. The two fitted models agree, but are parametrised

differently. The last few lines of output give standard errors and confidence intervals for the pa-

rameters γ and δ , and indicate that these parameters are significantly different from zero. The first

parameterisation (i.e. with an intercept included) is more useful for deciding whether the greenstone

has an effect on the intensity of gold deposits, while the second parameterisation is more useful for

directly reading off the estimated intensities.

The foregoing discussion depends upon the default ‘treatment contrasts’ being used, as ex-

plained below.

9.3.4 Models with a factor covariate

A spatial covariate with categorical values could arise from a map which divides the spatial domain

into regions of different type, according to criteria such as rock type, vegetation cover, land use,

administrative region, socioeconomic level, government building zone type, or anatomical subdivi-

sion of tissue. The map itself is a tessellation of the spatial domain. The associated spatial covariate

J(u) tells us which type or category applies to each given location u, so that J is a spatial covariate

with categorical values.

In some cases the original data will be in ‘vector graphics’ form, giving the spatial coordinates

of the boundaries of the regions of each type. To preserve accuracy, vector data should not be

discretised. The boundary polygons should be converted to a tessellation (object of class "tess")

which can then be passed directly as a covariate to ppm.

If the categorical data are provided as a pixel image, it is important to ensure that the pixel values

are recognised as categorical values. Printing or summarising the image in question should indicate

that it is fator-valued.

A numerical covariate Z can also be converted into a factor by dividing the range of values into

a few bands, and treating each band of values as a category. This is often a useful exploratory tool,

as we saw in Section 6.6.2.

9.3.4.1 Gorilla nest data

The gorillas dataset comes from a study [272] in the Kagwene Gorilla Sanctuary, Cameroon,

by the Wildlife Conservation Society Takamanda-Mone Landscape Project (WCS-TMLP). A de-

tailed description and analysis of the data is reported in [273]. The data were kindly contributed to

spatstat by Dr Funwi-Gabga Neba. The collaboration of Prof Jorge Mateu is gratefully acknowl-

edged.

The data include the marked point pattern of gorilla nest sites gorillas, and auxiliary data in

a list gorillas.extra containing seven pixel images of spatial covariates. We rescale the data to

kilometres:

> gor <- resale(gorillas, 1000, unitname="km")

> gor <- unmark(gor)

> gex <- lapply(gorillas.extra, resale,

s=1000, unitname="km")

Figure 9.7 shows the spatial locations of the (unmarked) gorilla nests, and the covariate vegetation

which reports the vegetation or cover type.
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Figure 9.7. Gorillas data. Left: gorilla nest locations. Right: vegetation type.

To save space on the printed page, we will abbreviate the names of the covariates, and the names

of the levels of factors. We could use substr to extract the first few characters of each name, or

abbreviate to convert the names to shorthand.

> names(gex)

[1℄ "aspet" "elevation" "heat" "slopeangle" "slopetype"

[6℄ "vegetation" "waterdist"

> shorten <- funtion(x) substr(x, 1, 4)

> names(gex) <- shorten(names(gex))

> names(gex)

[1℄ "aspe" "elev" "heat" "slop" "slop" "vege" "wate"

> names(gex)[4:5℄ <- ("sang", "styp")

> names(gex)

[1℄ "aspe" "elev" "heat" "sang" "styp" "vege" "wate"

> isfator <- !sapply(lapply(gex, levels), is.null)

> for(i in whih(isfator))

levels(gex[[i℄℄) <- shorten(levels(gex[[i℄℄))

> levels(gex$vege)

[1℄ "Dist" "Colo" "Gras" "Prim" "Seo" "Tran"

The following command fits a simple Poisson model in which the intensity is constant in each

vegetation type, but may depend on vegetation type:

> ppm(gor

~

vege, data=gex)

Nonstationary Poisson proess

Log intensity:

~

vege

Fitted trend oeffiients:

(Interept) vegeColo vegeGras vegePrim vegeSeo vegeTran

2.3238 2.0817 -0.7721 2.1148 1.1341 1.6151

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Interept) 2.3238 0.1060 2.1161 2.5316 *** 21.923

vegeColo 2.0817 0.5870 0.9312 3.2322 *** 3.546

vegeGras -0.7721 0.2475 -1.2571 -0.2871 ** -3.120

vegePrim 2.1148 0.1151 1.8892 2.3403 *** 18.373
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vegeSeo 1.1341 0.2426 0.6586 1.6096 *** 4.675

vegeTran 1.6151 0.2647 1.0964 2.1339 *** 6.102

For models which involve a factor covariate, the interpretation of the fitted coefficients depends

on which contrasts are in force, as specified by getOption("ontrasts"). We explain more

about this below. By default the ‘treatment contrasts’ are assumed. This means that — if an inter-

cept term is present — the coefficient associated with the first level of the factor is taken to be zero,

and the coefficients associated with the other levels are effectively differences relative to the first

level. In the model above, the fitted log intensities for each vegetation type are calculated as follows:

TYPE RELEVANT COEFFICIENTS LOG INTENSITY

Disturbed (Interept) 2.324
Colonising (Interept) + vegeColo 2.324+2.082
Grassland (Interept) + vegeGras 2.324−0.7721
Primary (Interept) + vegePrim 2.324+2.115
Secondary (Interept) + vegeSeo 2.324+1.134
Transition (Interept) + vegeTran 2.324+1.615

Rather than relying on such interpretations, it would be prudent to use the command predit to

compute predicted values of the model, as explained in Section 9.4.1 below.

Another way to fit the same model is to remove the intercept, so that a single coefficient will be

associated with each level of the factor.

> fitveg <- ppm(gor

~

vege - 1, data=gex)

> fitveg

Nonstationary Poisson proess

Log intensity:

~

vege - 1

Fitted trend oeffiients:

vegeDist vegeColo vegeGras vegePrim vegeSeo vegeTran

2.324 4.406 1.552 4.439 3.458 3.939

Estimate S.E. CI95.lo CI95.hi Ztest Zval

vegeDist 2.324 0.10600 2.116 2.532 *** 21.923

vegeColo 4.406 0.57735 3.274 5.537 *** 7.631

vegeGras 1.552 0.22361 1.114 1.990 *** 6.940

vegePrim 4.439 0.04486 4.351 4.527 *** 98.952

vegeSeo 3.458 0.21822 3.030 3.886 *** 15.846

vegeTran 3.939 0.24254 3.464 4.414 *** 16.241

> exp(oef(fitveg))

vegeDist vegeColo vegeGras vegePrim vegeSeo vegeTran

10.21 81.90 4.72 84.66 31.75 51.37

For this simple model, where intensity is constant inside each region defined by vegetation type, an

equivalent way to fit the same model is to estimate the intensities using quadrat counts. To check

this, we convert the pixel image to a tessellation and apply quadrat counting:

> vt <- tess(image=gex$vege)

> intensity(quadratount(gor, tess=vt))

tile

Dist Colo Gras Prim Seo Tran

10.201 69.155 4.781 84.012 32.651 50.922

The discrepancies are due to discretisation effects: refitting the model by calling ppm with nd=512

gives results consistent with the quadrat-counting estimates.
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9.3.4.2 Factor effects and contrasts

To understand fully the results obtained for the gorillas data above, we need to know more about

the handling of factors by the model-fitting code in R. If f is a factor then X

~

f specifies a point

process model in which the intensity depends on the level of f. The model is

λ (u) = exp(µ +αJ(u)) (9.14)

where J(u) is the level of the factor f at the location u. The parameters of this model are the

intercept µ and the effects α1, . . . ,αL of the different factor levels. Here we are assuming the factor

has L different levels numbered 1 to L. For the ith level of the factor, the corresponding value of the

intensity is eµ+αi .
While the model (9.14) is conceptually useful, it has the practical drawback that it is overparam-

eterised. If there are L different levels of the factor, then there are L+1 parameters to be estimated

from data, but only L different values of the intensity on the right-hand side of (9.14). In order to fit

the model we need to reduce the number of parameters by 1.

One option is to remove the intercept parameter µ . The model is then

λ (u) = exp(αJ(u)) (9.15)

so that the intensity value for the ith level of the factor is eαi . There are now only L parameters,

the effects α1, . . . ,αL of the factor levels. The model ppm(gor
~

vege - 1) has this form, so the

fitted coefficients are the fitted estimates of the log intensity for each type of vegetation.

The default behaviour in R is to retain the intercept and instead to constrain the effect of the

first level to be zero, α1 = 0. This convention is called the ‘treatment contrast’; it makes sense

when the first level of the factor is a baseline or control, while the other levels are different possible

‘treatments’ that could be applied to a subject in an experiment. The model (9.14) then states that

the intensity value for the first level is eµ , while the intensity value for another level i is eµ+αi , so

the coefficient αi is the difference in effect between level i and the first level, on a log scale. The

table on page 316 shows this calculation. An advantage of the treatment contrast is that we are often

interested in whether there is any difference between the intensities associated with different factor

levels: this can be assessed by testing the hypothesis αi = 0 for each i > 1.

In its linear modelling procedures, the commercial statistics package SAS® constrains the last

coefficient αL to be 0. Another commonly used constraint is α1+ . . .+αL = 0. In R one can choose

the constraint that is used by specifying the contrast or linear expression that will be set to zero.

This is done using the options function, with a call of the form:

options(ontrasts=(arg1,arg2))

where arg1, arg2 are strings which specify the contrasts to be used with ‘unordered’ and ‘ordered’

factors, respectively. All the factors discussed in this book are ‘unordered’. Note that if you do set

the contrasts, you have to specify both arg1 and arg2 even though you only care about arg1.

The possible values for either argument are the character strings "ontr.sum", "ontr.poly",

"ontr.helmert", "ontr.treatment" and "ontr.SAS". The default for arg1 is the ‘treat-

ment contrasts’ "ontr.treatment" which impose the constraint α1 = 0 in the context of a single

categorical predictor. We use this default throughout the book. If you are unsure what contrasts are

currently in force, type getOption("ontrasts").

It is important to remember that models obtained by employing different constraints are pre-

cisely equivalent, although the interpretation of the parameter estimates is different.

The overparameterised form (9.14) of the model allows one to conveniently specify models that

are of genuine interest and that would be very hard to specify otherwise. We elaborate on this when

we come to models with two (or more) categorical predictors.

The model-fitting software in R converts logical variables to categorical variables, so that the
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variable greenstone in the models above is converted to a fator with levels TRUE and FALSE.

The intercept term in the model is associated with the first level of the factor, which is FALSE, since

this comes alphabetically before TRUE. Happily this convention gives a sensible result here.

9.3.5 Additive models

We now start looking at models which involve more than one ‘original’ covariate. The Beilschmiedia

data (see Sections 9.3.1 and 9.3.2.1) include two (numerical) covariates, the terrain elevation and

terrain slope. The simplest loglinear model depending on both covariates is the additive model

λ (u) = exp(β0+β1E(u)+β2S(u)) (9.16)

where β0,β1,β2 are parameters to be estimated, E(u) is the terrain elevation in metres at location

u, and S(u) is the terrain slope (a dimensionless gradient). Additive models are specified by joining

the relevant model terms together using +:

> fitadd <- ppm(bei

~

elev + grad, data=bei.extra)

> fitadd

Nonstationary Poisson proess

Log intensity:

~

elev + grad

Fitted trend oeffiients:

(Interept) elev grad

-8.55862 0.02141 5.84104

The interpretation of the fitted model is straightforward, since both covariates are continuous nu-

merical quantities. On a level parcel of terrain (slope zero) at sea level (elevation zero) the intensity

of Beilschmiedia trees would be e−8.559 = 0.0001918 trees per square metre. For each additional

metre of terrain elevation, the intensity of increases by a factor e1×0.02141 = 1.022 or about 2.2
percent. For each additional increase of (say) 0.1 units in slope, the intensity increases by a factor

e0.1×5.841 = 1.793. These two effects are additive on the scale of the linear predictor: elevation in-

creases by 1 metre and slope increases by 0.1 units, then the log intensity increases by the elevation

effect 1×0.02141 plus the slope effect 0.1×5.841.
To assess the relative ‘importance’ of the slope and elevation variables in the model, we need to

account for the range of values of each variable. The terrain slope varies from zero to max(grad)=

0.3285 so the effect of slope varies by a factor of exp(5.841×0.3285) = 6.813 between flattest and
steepest slopes. Terrain elevation ranges between 119.8 and 159.5 metres, so the effect of elevation

varies by a factor of exp(0.02141(159.5− 119.8)) = 2.34 between lowest and highest elevations.

Hence the slope effect is more ‘important’ in magnitude.

For the Murchison data we have two covariates, namely dfault (a continuous numerical vari-

able) and greenstone (a logical covariate). The additive model with these two covariates is

λ (u) = exp(β0+β1d(u)+β2G(u)) (9.17)

where β0,β1,β2 are parameters to be estimated, d(u) is the distance to nearest fault, and G(u) is the
indicator which equals 1 inside the greenstone outcrop.

> ppm(gold

~

dfault + greenstone,data=mur)

Nonstationary Poisson proess

Log intensity:

~

dfault + greenstone

Fitted trend oeffiients:

(Interept) dfault greenstoneTRUE

-6.6171 -0.1038 2.7540
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The fitted model states that the intensity of gold deposits declines by a factor e−0.1038 = 0.9014 for

every additional kilometre of distance from the nearest fault, and for a given distance, the intensity

is e2.754 = 15.71 times higher inside the greenstone outcrop than it is outside the greenstone.

Similarly we could build an additive model with two factor covariates, such as

> ppm(gor

~

vege + styp, data=gex)

which states that the log intensity of gorilla nesting sites is the sum of an effect due to vegeta-

tion/cover type and an effect due to slope type. Equivalently the intensity is a vegetation effect

multiplied by a slope effect.

Note that the model bei
~

grad + I(grad^2) discussed in Section 9.3.2 is also an additive

model. It adds the effects of the two covariates grad and I(grad^2). Although the two covariates

are closely related, nevertheless this is formally an additive model.

Finally, note that adding the same covariate twice has no effect in a model formula: grad +

grad is equivalent to grad.

9.3.6 Modelling spatial trend using Cartesian coordinates

The Cartesian coordinates x and y can also serve as spatial covariates. They are particularly useful

for investigating spatial trend when there are no relevant covariate data, or perhaps when it is sus-

pected that the intensity is not only dependent on the available covariates. A wide class of models

can be built up by combining the Cartesian coordinates in convenient ways.

We illustrate this idea using the full Japanese Pines data of Ogata and Numata,

> jpines <- residualspaper[["Fig1"℄℄

A plot of these data (Figure 1.3 on page 4) suggests that they exhibit spatial inhomogeneity. No

auxiliary covariate data are available, so we resort to the Cartesian coordinates. For brevity we shall

write the intensity function for such models in the form λ ((x,y)) rather than the more long-winded

form ‘λ (u) where u is the point with coordinates (x,y)’. For instance an inhomogeneous Poisson

model with an intensity that is first order loglinear in the Cartesian coordinates will be written as

λθ((x,y)) = exp(θ0+θ1x+θ2y). To fit such a model to the Japanese Pines data simply type

> ppm(jpines

~

x + y)

Nonstationary Poisson proess

Log intensity:

~

x + y

Fitted trend oeffiients:

(Interept) x y

0.591840 0.014329 0.009644

Here the symbols x and y are reserved variable names that always indicate the Cartesian coordinates.

The fitted intensity function is

λθ((x,y)) = exp(0.5918+0.01433x+0.009644y) .

To fit an inhomogeneous Poisson model with an intensity that is log-quadratic in the Cartesian

coordinates, i.e. such that logλθ((x,y)) is a quadratic in x and y:

> ppm(jpines

~

polynom(x,y,2))

Nonstationary Poisson proess

Log intensity:

~

x + y + I(x^2) + I(x * y) + I(y^2)

Fitted trend oeffiients:

(Interept) x y I(x^2) I(x * y) I(y^2)

0.130330 0.461497 -0.200945 -0.044738 0.001058 0.020399
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Notice that the expression polynom(x,y,2) has been syntactically expanded into

x + y + I(x^2) + I(x*y) + I(y^2)

This is a special spatstat trick and applies only to the model formulae passed to ppm or kppm.

In the same vein we could fit a log-cubic polynomial polynom(x,y,3) and so on. An alter-

native to the full polynomial of order 3, which has 10 coefficients, is the harmonic polynomial

harmoni(x,y,3) which has only 7 coefficients.

Any transformation of the Cartesian coordinates can also be used as a covariate. For example, to

fit a model with constant but unequal intensities on each side of the vertical line x = 0.5, we simply

use the expression x < 0.5 to make a logical covariate:

> ppm(jpines

~

(x < 0.5))

Nonstationary Poisson proess

Log intensity:

~

(x < 0.5)

Fitted trend oeffiients:

(Interept) x < 0.5TRUE

0.7668 -1.8931

9.3.7 Models with offsets

An offset is a term in the linear predictor which does not involve any parameters of the model.

Offsets are useful when the effect of one variable is already known, or when we want to fit the

model relative to a known baseline.

For instance, in some cases it is appropriate to fit an inhomogeneous Poisson model with inten-

sity that is proportional to the covariate,

λ (u) = κZ(u) (9.18)

where Z is the covariate and κ is the parameter to be estimated. We called this a ‘baseline’ model

in Section 9.2.3. Taking logarithms, this model is equivalent to

logλ (u) = logκ + logZ(u) = θ + logZ(u) (9.19)

where θ = logκ is the only parameter of the model. Note that there is no coefficient in front of the

term logZ(u) in (9.19), so logZ(u) is an offset.

An important example of a baseline covariate Z(u) is the spatially varying density of human

population. The spatial point pattern of cases of a rare disease could reasonably be expected to

follow a Poisson point process with intensity (9.18), where κ is the (constant) disease risk per head

of population.

The Chorley-Ribble data (Figure 1.12 on page 9) give the locations of cases of the rare cancer of

the larynx, and a sample of cases of the much more common lung cancer. The smoothed intensity

of lung cancer cases can serve as a surrogate for the spatially varying density of the susceptible

population.

> lung <- split(horley)$lung

> larynx <- split(horley)$larynx

> smo <- density(lung, sigma=0.15, eps=0.1, positive=TRUE)

Here we have adopted the smoothing bandwidth σ = 0.15km chosen by Diggle [224]; the different

rules for automatic bandwidth selection give a wide range of results between 0.07 and 2 km. The

pixels are eps=0.1km wide. The argument positive=TRUE ensures that negative or zero pixel val-

ues (due to numerical error) are replaced by a small positive number. To avoid numerical instability

we shall raise the threshold slightly:
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Figure 9.8. Smooth intensity estimate for lung cancer cases in the Chorley-Ribble data.

> smo <- eval.im(pmax(smo, 1e-10))

The resulting pixel image smo, serving as the baseline for our model, is shown in Figure 9.8.

In a model formula, we indicate an offset term by enclosing it in the function offset. Accord-

ingly we fit the constant risk model (9.18) by

> ppm(larynx

~

offset(log(smo)))

Nonstationary Poisson proess

Log intensity:

~

offset(log(smo))

Fitted trend oeffiient: (Interept) = -2.939

The fitted coefficient (Interept) is the constant logκ appearing in (9.19), so converting back to

the form (9.18), the fitted model is

λ (u) = e−2.939 Z(u) = 0.05292 Z(u)

where in this case Z(u) is the smoothed intensity of lung cancer cases.

In this example, note that the fitted parameter κ is not the estimated risk of laryngeal cancer per

head of population, because the lung data are a subsample from the cancer registry, and lung cancer

cases are a subset of the susceptible population. The best way to estimate the risk of laryngeal cancer

assuming constant risk is to divide the total number of laryngeal cancer cases by an estimate of the

total susceptible population, since the constant risk model does not involve spatial information. The

model fitted above is useful mainly for comparison against alternative models where the risk of

laryngeal cancer is spatially varying.

Spatial transformations, such as geographic projections, also introduce offset terms. Suppose

that a point process X has intensity function λX(u) = exp(βTZ(u)). We change the coordinate sys-

tem so that the points xi are mapped to new coordinate positions yi = f (xi). Changes of coordinates
were discussed in Section 6.5.3: the transformed point process Y = f (X) has intensity function

given by equation (6.17). The new model is

λY(u) = exp(logJ(u)+βTZ( f−1(u))) (9.20)

which includes the offset term logJ(u), the log of the Jacobian of the change of coordinates.

In a study of the spatial pattern of tree deaths in a water catchment [684, 145] the spatial pattern

of live trees, observed at a certain date, was smoothed to give a covariate image A(u) representing the
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spatially varying density of the forest. Other covariates Z1(u), . . . ,Zp(u) were available, including
terrain elevation, depth to water table, and seasonal recharge flow of groundwater. Models of the

form

λ (u) = A(u)exp(θ0+θ1Z1(u)+ . . .+θpZp(u)) (9.21)

were fitted, using a model formula of the type
~

offset(log(A)) + Z1 + ... + Zp. The

term in the exponential represents the spatially varying tree death risk.

When fitting a baseline model it is absolutely crucial to express the baseline term in the form

offset(log(baseline)). If the offset is omitted, we get a completely different model, as

discussed below.

9.3.8 Power law models

It is sometimes appropriate to fit a power law relationship

λ (u) = αZ(u)k (9.22)

where the exponent k is not known, and must be estimated from data, along with the coefficient α .

Taking logarithms, the power law (9.22) is equivalent to

logλ (u) = β0+β1 logZ(u) (9.23)

where β0 = logα and β1 = k. This is a loglinear model with covariate logZ.

In the Beilschmiedia data, suppose we believe that the forest density obeys a power law as a

function of terrain slope. This can be fitted easily:

> ppm(bei

~

log(grad), data=bei.extra)

Nonstationary Poisson proess

Log intensity:

~

log(grad)

Fitted trend oeffiients:

(Interept) log(grad)

-3.4797 0.5549

Note that there is no offset here. The printed output describes a model in which the intensity is

proportional to the 0.55th power of the terrain slope, or roughly the square root of the slope.

Care needs to be taken with power models if the covariate data may include zero values. If the

exponent k = β1 is positive, then the power law (9.22) implies that, in places where the covariate

value Z(u) is zero, the intensity λ (u) is also zero, so there is zero probability of observing a random
point at such places. If a data point is observed at a place where the covariate is zero, this model is

invalidated (it has likelihood zero). In the examples above, if there had been a Beilschmiedia tree

growing on a perfectly level patch of land (i.e. where the terrain slope is zero) then the data would

have been inconsistent with the model (9.18) and (9.22). In some cases this may be detected by

the ppm function, but in many cases it will not be detected until the low-level code throws a rather

undignified error. We can reproduce this scenario by artificially assigning a zero value to a pixel

where there is a data point:

> G <- bei.extra[["grad"℄℄

> G[bei[42℄℄ <- 0

> ppm(bei

~

log(G))

Error in glm.fit(x = struture((1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, :

NA/NaN/Inf in 'x'

If the fitted exponent k = β1 is negative, then the power law implies that, in places where Z(u) =
0, the intensity is infinite. This means it is possible that the fitted model may be improper. In
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Section 9.2.1 we noted that, in order for a Poisson process to be well defined, the integral of the

intensity function over the window must be finite. Intensity functions of the form (9.22) may not be

integrable if the exponent β1 is negative.

For example with the Murchison data, the covariate d(u), distance to nearest fault, takes zero

values along the faults themselves. If we fit a power model,

> ppm(gold

~

log(dfault), data=mur)

Nonstationary Poisson proess

Log intensity:

~

log(dfault)

Fitted trend oeffiients:

(Interept) log(dfault)

-5.0576 -0.7188

the fitted model says that the intensity is the negative 0.72th power of d(u). This function is not

integrable so the model is improper, that is, it is not well defined.

Improper models can occur in other contexts where some values of the covariate are infinite (in

this case Z = 0 gives logZ =−∞). An improper model will lead to difficulties with simulation code

and various other algorithms.

9.3.9 Models with interaction between covariates

A model which is not additive is said to have ‘interaction’. A statistical model involving two co-

variates A and B is additive if the linear predictor is the sum of a term depending only on A plus

another term depending only on B. Otherwise, the model is said to exhibit interaction between the

covariates A and B. Interaction means that the effect of a change in A depends on the current value

of B, and vice versa.

Be warned that there is another use of the word ‘interaction’ in spatial statistics. A point process

which is not Poisson is said to exhibit ‘interaction’ between the points of the process. This is

a distinct and completely unrelated concept for which the same word is used. We will call this

‘interpoint interaction’ when the distinction needs to be emphasised.

In the present context we are talking about interaction between covariates in a model for the

intensity of the point process. In a model formula, the expression A:B represents a particular model

term called ‘the’ interaction between the covariates A and B. This is effectively a new covariate

depending on both A and B. Its definition depends, as usual, on the type of variables involved: we

explain further below.

Normally, a model that includes an interaction A:B should also include the ‘main effects’ A and

B. Usually it is possible to write a model which includes only an interaction term but this makes the

results difficult to interpret and reduces their usefulness. How to interpret them, and whether they

actually make any sense at all, depends on circumstances.

To include interaction between A and B in a model we would thus generally write the formula

in the form X

~

A + B + A:B. The expression A + B + A:B can be abbreviated to A * B which

is read as ‘A cross B’ (and the operator * is referred to as the crossing operator). Examples are

discussed below.

Table 9.2 lists operators that can be applied to terms in a model formula.

9.3.9.1 Interaction between two numerical covariates

If A and B are both numerical covariates, the expression A:B is interpreted as simply their numerical

product, A times B. This makes sense: there is ‘interaction’ between A and B if the rate of change of

the response with respect to A depends upon the value of B (and vice versa). This will be the case if

the response depends on the product of A and B.

Thus, if A and B are numerical covariates, A:B is equivalent to I(A * B) and A * B is equivalent

to X
~

A + B + I(A*B). Some analysts prefer to use the expanded forms to prevent confusion.
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OPERATOR EXAMPLE MEANING

+ +A include this term
- -A remove this term
: A:B include interaction between A and B
* A*B include these terms and their interaction
^ (A+B)^3 include these terms and interactions up to order 3
/ A/B nesting: B nested within A
%in% A %in% B interaction between A and B
| A|B conditioning: A given B

Table 9.2. Operators in model formulae. (The operator ‘|’ is only recognised by some functions.)

For the Beilschmiedia data, we have already looked at an additive model involving the terrain

elevation elev and terrain slope grad. Fitting a model with interaction between these covariates is

just as easy:

> fit <- ppm(bei

~

elev * grad, data=bei.extra)

> fit

Nonstationary Poisson proess

Log intensity:

~

elev * grad

Fitted trend oeffiients:

(Interept) elev grad elev:grad

-4.389734 -0.007115 -36.608966 0.293532

9.3.9.2 Interaction between two factors

If A and B are both factors, the formula X
~

A * B represents the (overparameterised) mathematical

model

λ (u) = exp(µ +αA(u)+βB(u)+ γA(u),B(u)) (9.24)

where A(u) is the level of factor A at the location u, and B(u) is the level of B at u. This model has

parameters µ (the intercept), α1, . . . ,αL (the main effects of the levels of A), β1, . . . ,βM (the main

effects of the levels of B), and γ1,1, . . . ,γL,M (the interaction effects for each combination of levels of

A and B). At a location u where A(u) = i and B(u) = j, the predicted intensity is exp(µ +αi +β j +
γi, j). Compared with the additive model

λ (u) = exp(µ +αA(u)+βB(u)), (9.25)

the interaction model (9.24) has an additional ‘synergy’or ‘catalysis’ term between the individual

covariates (which could be negative; a ‘counter-synergy’) of the form γA(u),B(u) which corresponds

to the interaction term A:B.

The gorillas dataset (page 314) is supplied with factor covariates vegetation and heat. A

model involving interaction between these two factors is:

> ppm(gor

~

vege * heat, data=gex)

Nonstationary Poisson proess

Log intensity:

~

vege * heat

Fitted trend oeffiients:

(Interept) vegeColo vegeGras vegePrim

2.6687 -13.9713 -1.1268 1.7189

vegeSeo vegeTran heatMode heatCool

0.6746 0.8753 -0.7432 -0.8605

vegeColo:heatMode vegeGras:heatMode vegePrim:heatMode vegeSeo:heatMode
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16.5848 0.7797 0.8326 0.9814

vegeTran:heatMode vegeColo:heatCool vegeGras:heatCool vegePrim:heatCool

1.3636 17.9549 -11.9840 0.9214

vegeSeo:heatCool vegeTran:heatCool

-13.7854 NA

*** Model is not valid ***

*** Some oeffiients are NA or Inf ***

The result gives a fitted log intensity for every possible combination of vegetation type and heat

load index. Note that one of the fitted coefficients is NA, because the corresponding combination of

vegetation and heat does not occur in the data — at least, not at any of the quadrature points

(sample locations used to fit the model).

9.3.9.3 Interaction between factor and numerical covariate

If A is a factor and Z is numerical, the additive model X
~

A + Z is

λ (u) = exp(µ +αA(u)+βZ(u)) (9.26)

while the full interaction model X
~

A * Z is

λ (u) = exp(µ +αA(u)+βZ(u)+ γA(u)Z(u)). (9.27)

In the additive model (9.26) the parameters α1, . . . ,αL are the effects of the different levels of the

factor A, while the ‘slope’ parameter β is the effect of a unit increase in the numerical covariate

Z. If we were to plot the linear predictor (the log intensity) as a function of Z for different levels

of the covariate, the graph would consist of parallel lines with the same slope β but with different

intercepts µ +αi.

In the interaction model (9.27) there is an extra term γA(u)Z(u) which causes the effect of a unit

increase in Z to depend on the level of the factor A. The plot of the linear predictor described above

would show lines with different slopes β + γAi
.

The Murchison data (Section 9.3.2.2) include two spatial objects serving as covariate data: a

window greenstone and a line segment pattern faults. The greenstone window is automat-

ically interpreted as a logical-valued covariate function, equal to TRUE inside the window. From

the faults pattern we have constructed a numerical spatial covariate function dfault. The model

with interaction is:

> ppm(gold

~

dfault * greenstone, data=mur)

Nonstationary Poisson proess

Log intensity:

~

dfault * greenstone

Fitted trend oeffiients:

(Interept) dfault greenstoneTRUE

-6.0184 -0.2047 2.0013

dfault:greenstoneTRUE

0.1674

The estimates of the coefficients in (9.27) are µ = 315.4, β = 316.3, α
FALSE

= 0, α
TRUE

= 316.5,

γ
FALSE

= 0, and γ
TRUE

= 317.6.

9.3.9.4 Nested interaction

It is sometimes appropriate to fit a model with the formula X
~

A + A:B. That formula can also be

rendered as y
~

A/B. The operator / stands for a nested interaction and we read A/B as ‘B nested

within A’.

For example, in a taxonomic classification of organisms, suppose G and S are the Genus and
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Species names, treated as factors. The Species name only makes sense when the Genus is specified.

We may wish to compare models which depend only on Genus, of the form y

~

G, with models

which depend on Species, of the form y

~

G/S.

Nesting a numerical covariate inside a factor is effectively the same as crossing the two covari-

ates. For the Murchison data, we may try nesting the numerical covariate dfault inside the factor

greenstone:

> ppm(gold

~

greenstone/dfault, data=mur)

Nonstationary Poisson proess

Log intensity:

~

greenstone/dfault

Fitted trend oeffiients:

(Interept) greenstoneTRUE greenstoneFALSE:dfault

-6.01845 2.00131 -0.20466

greenstoneTRUE:dfault

-0.03728

> ppm(gold

~

greenstone/dfault - 1, data=mur)

Nonstationary Poisson proess

Log intensity:

~

greenstone/dfault - 1

Fitted trend oeffiients:

greenstoneFALSE greenstoneTRUE greenstoneFALSE:dfault

-6.01845 -4.01714 -0.20466

greenstoneTRUE:dfault

-0.03728

These two models are exactly equivalent, except for the way in which they are parametrised. They

are also equivalent to the interaction model with formula gold
~

greenstone * dfault. Dif-

ferent choices of parameterisation make it easier or harder to extract particular kinds of information.

Nesting a factor A inside a numerical covariate Z gives a model where the effect of a unit change

in Z depends on the level of A, but the factor A has no effect on the intercept. In the plot of the linear

predictor against Z described above, the lines are not parallel, but they all have the same intercept.

For the Murchison data, the model gold
~

dfault/greenstone stipulates that the intensity of

gold deposits very close to a geological fault (dfault≈ 0) must be the same inside and outside the

greenstone, but as we increase distance from the faults, the intensity may decrease at different rates

inside and outside the greenstone:

> ppm(gold

~

dfault/greenstone, data=mur)

Nonstationary Poisson proess

Log intensity:

~

dfault/greenstone

Fitted trend oeffiients:

(Interept) dfault dfault:greenstoneTRUE

-4.3472 -0.4972 0.5020

Nested interactions also arise in connection with random effects, as discussed in Chapter 16.

In nested designs the operator %in% is sometimes useful. It is equivalent to an interaction:

A %in% B is equivalent to A:B.

9.3.10 Formulae involving many variables

A model can involve any number of covariates. In an additive model, the variable names are simply

joined by the ‘+’ operator:

ppm(Y

~

X1 + X2 + X3 + ... + Xn)
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This expression could be long and tedious to type out. A useful shortcut is the symbol ‘.’ represent-

ing all the available covariates. This only works when the covariates are supplied in the argument

data (see page 306). The additive model involving all covariates can be fitted using the formula

‘ Y

~

. ’ as in

> ppm(gor

~

. , data=gex)

To fit the additive model involving all covariates except the heat covariate,

> ppm(gor

~

. - heat, data=gex)

Interactions between more than two predictors (‘higher order interactions’) are easy to define. For

three factors A, B, and C the second-order interactions are A:B, A:C, and B:C. The third-order inter-

action is A:B:C. The mathematical expressions defining higher-order interactions get increasingly

cumbersome to write down, but the ideas are basically the same as for second-order interactions.

Higher-order interactions are often difficult to interpret in practical terms.

In the model formula context the + and : operators are what the pure mathematicians (poor

dears!) call ‘idempotent’ operations. That is, A+A is just equal to A, and likewise A:A is equal to A.

The crossing operator * obeys the distributive and associative laws, so that (A + B + C) * (A

+ B + C) expands to A + B + C + A:B + A:C + B:C, and A * B * C expands to A + B + C

+ A:B + A:C + B:C + A:B:C.

We have now dealt with the model operators +, -, :, *, and /. The last operator to be mentioned

is the power operator ^. If A is any model term, A^2 is equivalent to A * A, while A^3 is equivalent

to A * A * A and so on. This is particularly useful when we want to specify all main effects and

interactions up to a certain order. For example (A + B + C)^2 is equivalent to (A + B + C)

* (A + B + C) which expands to A + B + A:B + A:C + B:C, containing all main effects and

second order interactions between the covariates A, B, and C. One could also use the ‘.’ symbol, for

example

> ppm(gor

~

.^2, data=gex)

would fit all main effects and all second-order interaction terms involving all the covariates in the

list gex.

Tip: To check the expansion of a complicated formula f, try update(f,.

~

.) This uses

the symbol ‘.’ in another sense, explained in Section 9.4.4.

9.4 Statistical inference for Poisson models

9.4.1 Fitted models

The value returned by the model-fitting function ppm is an object of class ""ppm"" that repre-

sents the fitted model. This is analogous to the fitting of linear models (lm), generalised linear

models (glm), and so on. There are many standard operations on fitted models in R which can

be applied to point process models: these are listed in Table 9.3. That is, these generic opera-

tions have methods for the class "ppm". For information on these methods, consult the help for

print.ppm, summary.ppm, plot.ppm, etc. The methods are described in the present chapter,

except for residuals, influene, and dfbetas which are described in Chapter 11.

Additionally Table 9.4 lists some non-generic functions in the base R system which work on
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print print basic information
summary print detailed summary information
plot plot the fitted intensity
predit compute the fitted intensity
simulate generate simulated realisations of model
update re-fit the model

oef extract the fitted coefficient vector θ̂

vov variance-covariance matrix of θ̂
anova analysis of deviance
logLik loglikelihood value
formula extract the model formula
terms extract the terms in the model
fitted compute the fitted intensity at data points
residuals compute residuals
influene compute likelihood influence diagnostics
dfbetas compute parameter influence diagnostics
model.matrix compute the design matrix

Table 9.3. Standard R generic operations which have methods for point process models (class

"ppm").

"ppm" objects. For information on these functions, consult the help for the function itself. Finally

Table 9.5 on page 338 lists some generic functions defined in spatstat which apply to "ppm"

objects and are useful for Poisson models.

onfint confidence intervals for parameters
step stepwise model selection
stepAIC (package "MASS") stepwise model selection
drop1 one step model deletion
add1 one step model augmentation
AIC Akaike Information Criterion

Table 9.4. Functions in the base R system which work on "ppm" objects.

The print method gives important information about the model structure and the fitted model

parameters. For Poisson models it also gives a table of parameter estimates with standard errors,

confidence intervals, and the result of a test that the parameter is significantly different from zero.

For example with the Beilschmiedia data we may do the following.

> beikm <- resale(bei, 1000, unitname="km")

> bei.extrakm <- lapply(bei.extra, resale, s=1000, unitname="km")

> fitkm <- ppm(beikm

~

x + y)

> fitkm

Nonstationary Poisson proess

Log intensity:

~

x + y

Fitted trend oeffiients:

(Interept) x y

9.0910 -0.8031 0.6496

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Interept) 9.0910 0.04306 9.0066 9.1754 *** 211.128
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x -0.8031 0.05863 -0.9180 -0.6882 *** -13.698

y 0.6496 0.11571 0.4228 0.8764 *** 5.614

This is the fitted model with intensity function

λθ((x,y)) = exp(θ0+θ1x+θ2y) (9.28)

where spatial coordinates x and y are measured in kilometres and, for example, the estimate of θ1 is
θ̂1=−0.8031 with standard error se(θ̂1)= 0.05863 and 95% confidence interval [−0.918,−0.6882].
The amount of information displayed, and the layout, depend on spatstat.options('terse')

and spatstat.options('print.ppm.SE').

The fitted coefficients of the model can be extracted by oef.ppm, a method for the generic

function oef:

> oef(fitkm)

(Interept) x y

9.0910 -0.8031 0.6496

The plot method is useful for initial inspection of a fitted model, because it offers a wide range of

displays. Figure 9.9 shows the result of the command

> plot(fitkm, how="image", se=FALSE)

with modifications to the graphics parameters.

6
8

1
0

1
2

Figure 9.9. Result of plotting a fitted Poisson model.

Very detailed information about the model can be printed by typing summary(fitkm). The

result of summary.ppm is an object of class summary.ppm which can be printed and manipulated in

other ways. For example the table of parameter estimates, standard errors, and confidence intervals

is obtained by

> oef(summary(fitkm))

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Interept) 9.0910 0.04306 9.0066 9.1754 *** 211.128

x -0.8031 0.05863 -0.9180 -0.6882 *** -13.698

y 0.6496 0.11571 0.4228 0.8764 *** 5.614
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9.4.2 Standard errors and confidence intervals for parameters

The accuracy of the fitted model coefficients can be analysed by standard asymptotic theory as

explained in Section 9.7 and in [396, 565]. For sufficiently large samples from a loglinear Poisson

model (9.6), the estimated parameters θ̂ have approximately a multivariate normal distribution with

mean equal to the true parameters θ and variance-covariance matrix var θ̂ = Iθ
−1, where Iθ is the

Fisher information matrix

Iθ =
∫

W
Z(u)Z(u)Tλθ(u)du. (9.29)

The estimated variance-covariance matrix ˆvar θ̂ = Iθ̂
−1 is computed by vov.ppm, a method for

the generic function vov.

> vov(fitkm)

(Interept) x y

(Interept) 0.001854 -1.491e-03 -3.528e-03

x -0.001491 3.438e-03 1.208e-08

y -0.003528 1.208e-08 1.339e-02

The diagonal of this matrix contains the estimated variances of the individual parameter estimates

θ0,θ1,θ2, so the standard errors are:

> sqrt(diag(vov(fitkm)))

(Interept) x y

0.04306 0.05863 0.11571

Confidence intervals for the parameters θ can be obtained from the standard function onfint:

> onfint(fitkm, level=0.95)

2.5 % 97.5 %

(Interept) 9.0066 9.1754

x -0.9180 -0.6882

y 0.4228 0.8764

and these could also be constructed manually from the parameter estimate oef(fitkm) and the

standard error sqrt(diag(vov(fitkm))).

The estimated correlation between individual parameter estimates can be useful in detecting

collinearity and confounding. Correlations can be computed using vov.ppm:

> o <- vov(fitkm, what="orr")

> round(o, 2)

(Interept) x y

(Interept) 1.00 -0.59 -0.71

x -0.59 1.00 0.00

y -0.71 0.00 1.00

This suggests fairly strong negative correlation between the intercept parameter estimate θ̂0 and the
estimates of the coefficients of x and y. However, the correlation between an intercept estimate and

a slope estimate depends on the origin for the covariate. We get a different answer if we place the

coordinate origin in the centre of the study region:

> fith <- update(fitkm, .

~

I(x-0.5) + I(y-0.25))

> o <- vov(fith, what="orr")

> round(o, 2)
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(Interept) I(x - 0.5) I(y - 0.25)

(Interept) 1.00 0.23 -0.09

I(x - 0.5) 0.23 1.00 0.00

I(y - 0.25) -0.09 0.00 1.00

Standard errors and confidence intervals for these parameters also depend on the origin for the

covariate.

9.4.3 Prediction

For any Poisson model with intensity λ (u) = λθ(u)where θ is a parameter vector, the fitted intensity

or predicted intensity is the function λ
θ̂
(u) obtained by substituting the fitted parameter estimates

into the intensity formula.

The fitted intensity is computed by predit.ppm, a method for the generic function predit.

By default it computes the fitted intensity at a regular grid of locations yielding a pixel image:

> fit <- ppm(bei

~

polynom(grad, elev, 2), data=bei.extra)

> lamhat <- predit(fit)

The result is shown in the left panel of Figure 9.10. Alternatively predit.ppm can be used to

obtain predicted values at any locations, including the original data points:

> lamB <- predit(fit, loations=bei)

Figure 9.10. Contour plots of the fitted intensity predit(fit) (Left) and standard error

predit(fit, se=TRUE)$se (Right).

There are many useful ways to plot the fitted intensity function, using the tools described in Sec-

tion 4.1.4 of Chapter 4. The front cover illustration of this book (shown in grey scale in Figure 9.11)

is a perspective view of the rainforest terrain, coloured according to the value of the fitted intensity,

with the Beilschmiedia tree locations added. It was produced by the following code:

> M <- persp(bei.extra$elev, olin=lamhat, olmap=topo.olors,

shade=0.4, theta=-55, phi=25, expand=6,

box=FALSE, apron=TRUE, visible=TRUE)

> perspPoints(bei, Z=bei.extra$elev, M=M, ph=20, ex=0.1)

More detail about the use of persp.im and perspPoints can be found on page 88.

For a loglinear model (9.6), the asymptotic variance of the predicted intensity λθ̂(u) at a given
location u is

var λ̂ (u)∼ Z(u)Iθ
−1Z(u)⊤λθ(u). (9.30)

The right panel of Figure 9.10 shows the standard error, i.e. the square root of this variance, which

is computed by predit(fit, se=TRUE)$se.

A confidence interval for the true value of λ (u) at each location u can be computed by
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Figure 9.11. Perspective view of rainforest terrain shaded according to intensity of fitted model,

with original point pattern superimposed. Colour version on front cover of book.

predit(fit, interval="onfidene"). This yields a list of two images giving the lower and

upper limits of the confidence interval.

It is also possible to plot the ‘effect’ of a single covariate in the model. The command effetfun

computes the intensity of the fitted model as a function of one of its covariates. An example was

shown in Figure 9.3.

We may also be interested in predicting the number of points in a spatial region B. For a Poisson

process, the expected number of points in B is the integral of the intensity over B, equation (9.1) on

page 301. The fitted mean (expected) number of points in B is

µ̂(B) =

∫

B
λ̂ (u)du.

This can be computed using predit.ppm by setting type="ount" and specifying the region B

as window. To find the expected number of trees at elevations below 130 metres:

> B <- levelset(bei.extra$elev, 130)

> predit(fit, type="ount", window=B)

[1℄ 37.4

The asymptotic variance of µ̂(B) is

var µ̂(B)∼ M(B)Iθ
−1M(B)⊤ (9.31)

where

M(B) =
∫

B
Z(u)λθ(u)du (9.32)

is the expected sum of the covariate values at the data points, by Campbell’s formula (6.11). This

allows us to compute the standard error for the estimate of the mean number of trees:

> predit(fit, B, type="ount", se=TRUE)

$estimate

[1℄ 37.4

$se

[1℄ 3.631
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or a confidence interval for the true expected number (9.1):

> predit(fit, B, type="ount", interval="onfidene")

2.5% 97.5%

30.28 44.51

In this case it is also meaningful to compute a prediction interval for the random number of trees in

the specified region:

> predit(fit, B, type="ount", interval="predition")

2.5% 97.5%

23 51

It is not clear exactly what this means for the Beilschmiedia data. A 95% prediction interval for the

number of points in region B is designed so that, if the experiment were repeated, there is a 95%

probability that the random value of n(X∩B) would lie in the interval. The concept of ‘repeating

the experiment’ makes more sense if there is a time dimension — for example if the point pattern is

a record of accidents reported in a specific year. Assuming independence between successive years

of observations, there is a 95% probability that next year’s count of accidents in the same region

will lie between the calculated limits. The calculation assumes that the model is true, but takes into

account the uncertainty in the model parameters due to estimation from the data.

9.4.4 Updating a model

In data analysis we typically fit several different candidate models to the same data [181, 180].

The generic function update makes it easy to do this. It modifies a fitted model, for example by

changing the model formula and re-fitting the model.

The method update.ppm is provided in spatstat for updating a fitted point process model.

The syntax is

update(objet, ...)

where objet is a fitted point process model (class "ppm") and the subsequent arguments ‘...’,

if any, determine how the model should be changed. The result is another fitted model of the same

kind.

The syntax update(objet) makes sense, and causes the objet to be re-fitted. The result is

different from the original objet if any of the data used to fit the original model have changed.

The second argument of update may be a formula, specifying the new model formula to be

used in re-fitting the model.

> fitsr <- ppm(bei

~

1, data=bei.extra)

> update(fitsr, bei

~

grad)

Nonstationary Poisson proess

Log intensity:

~

grad

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Interept) -5.391 0.03002 -5.449 -5.332 *** -179.58

grad 5.022 0.24540 4.541 5.503 *** 20.46

Notice that we needed to provide the data argument to the first model fitsr, even though that

model does not depend on any covariates, in order for the covariate grad to be available for the

updated model. This would have been unnecessary if grad had been an existing object in the R

session.

The new formula may include the symbol ‘.’ representing ‘what was there before’. To keep the

same left-hand side of the formula, use ‘.’ on the left-hand side:
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> fitgrad <- update(fitsr, .

~

grad)

To modify the right-hand side of the formula, use ‘.’ on the right-hand side, modifying it with the

model operators:

> fitall <- update(fitgrad, .

~

. + elev)

> fitall

Nonstationary Poisson proess

Log intensity:

~

grad + elev

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Interept) -8.55862 0.341101 -9.22717 -7.89008 *** -25.091

grad 5.84104 0.255861 5.33956 6.34252 *** 22.829

elev 0.02141 0.002288 0.01693 0.02589 *** 9.358

To remove the intercept, use -1 or +0:

> fitp <- update(fitall, .

~

. - 1)

The symbolic manipulation of formulae involving the symbol ‘.’ is handled by the update method

for formulae, update.formula. This is quite useful in its own right as a quick way to see the effect

of a change in a formula:

> update(gor

~

(heat + vege)^2, .

~

. - heat:vege)

gor

~

heat + vege

and simply to expand a complicated formula:

> update(gor

~

(heat + vege + sang)^3, .

~

.)

gor

~

heat + vege + sang + heat:vege + heat:sang + vege:sang +

heat:vege:sang

Warning: the operator ‘-’ does not remove offset terms in model formulae. A command like

update(fit,.

~

. - offset(A)) does not delete the term offset(A).

9.4.5 Testing significance of a term in the model

Often we want to decide whether a particular covariate Z has an effect on the point pattern (see

Sections 6.6–6.7). In a modelling context this can be studied by comparing two different models,

which are identical except that one of the models includes a term depending on the covariate Z.

For example, to decide whether the Beilschmiedia forest density depends on terrain slope, the two

models would be:

> fit0 <- ppm(bei

~

1)

> fit1 <- ppm(bei

~

grad, data=bei.extra)

We can assess the strength of evidence for the covariate effect by performing a significance test

(Chapter 10) comparing the two models. The null hypothesis is the smaller model fit0 which does

not include the covariate effect; the alternative hypothesis is the larger model fit1 including the

covariate effect.

The theoretically optimal technique is the Likelihood Ratio Test (Section 10.3.2) which can be

carried out using analysis of deviance, the generalisation of analysis of variance. It is performed in

spatstat using anova.ppm, a method for the generic function anova:

> anova(fit0, fit1, test="LR")
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Analysis of Deviane Table

Model 1:

~

1 Poisson

Model 2:

~

grad Poisson

Npar Df Deviane Pr(>Chi)

1 1

2 2 1 382 <2e-16 ***

---

Signif. odes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This example shows the likelihood ratio test of the null hypothesis of CSR against the alternative of

an inhomogeneous Poisson process with intensity that is a loglinear function of the slope covariate

(9.7). The p-value, shown under the heading Pr(>Chi), is extremely small, indicating rejection of

CSR in favour of the alternative. Note that 2e-16 or 2×10−16 is the smallest detectable difference

between ‘real numbers’4 on the 32-bit computer which produced this output, so the output says that

the p-value is effectively zero.

An advantage of this approach is that we can easily allow for the effects of other covariates, by

including these ‘other covariates’ in both models. For example, we could test the significance of a

terrain slope effect after accounting for the effect of terrain elevation:

> fit2e <- ppm(bei

~

polynom(elev, 2), data=bei.extra)

> fit2e1g <- update(fit2e, .

~

. + grad)

> anova(fit2e, fit2e1g, test="LR")

Analysis of Deviane Table

Model 1:

~

elev + I(elev^2) Poisson

Model 2:

~

elev + I(elev^2) + grad Poisson

Npar Df Deviane Pr(>Chi)

1 3

2 4 1 418 <2e-16 ***

---

Signif. odes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Similarly, for the Chorley-Ribble data (page 9) the key question is whether distance to the incinera-

tor has an effect on the intensity of laryngeal cancer, after allowing for the fact that the intensity of

laryngeal cancer cases will depend on the spatially varying density of the population at risk. A like-

lihood ratio test can be used to compare two models, both involving a term related to the population

density, but only one model including a term related to distance from the incinerator.

9.4.6 Model selection using AIC

Model selection [154] is the task of choosing the ‘best fitting’ statistical model from amongst several

competing models for the same dataset.

Hypothesis testing, as described above, can be regarded as a special case of model selection.

Alternatives to hypothesis testing are sometimes required. For example, the likelihood ratio test

requires the null hypothesis to be a sub-model of the alternative. Unfortunately the model (9.18), in

which forest intensity is proportional to terrain slope, does not include homogeneous intensity as a

special case, so we cannot use analysis of deviance to test the null hypothesis of CSR against the

alternative of an inhomogeneous Poisson process with intensity (9.18).

Models which are not nested can nevertheless be compared using the Akaike Information Crite-

rion [9]

AIC=−2logLmax +2p (9.33)

4
.Mahine$double.eps gives the smallest double-precision floating-point number x that satisfies 1 + x != 1.



SA
M
PL
E

336 Spatial Point Patterns: Methodology and Applications with R

where Lmax = L(θ̂) is the maximised likelihood for the model in question, and p the number of

parameters for this model. The model with the lowest value of AIC is preferred. This strikes a

balance between the degree of fit and the complexity of the model.

The R function AIC computes the AIC of any model, including a "ppm" object:

> fitprop <- ppm(bei

~

offset(log(grad)),data=bei.extra)

> fitnull <- ppm(bei

~

1)

> AIC(fitprop)

[1℄ 42497

> AIC(fitnull)

[1℄ 42764

In this case the preferred model is fitprop, the model (9.18) with intensity proportional to slope.

Model selection techniques are especially valuable when there are many covariates, or many

possible terms which could be included in the model. One very simple approach is ‘forward step-

wise selection’, in which we start with a minimal acceptable model (containing few terms), and add

new terms to the model, one by one. In ‘backward stepwise selection’ we start with a maximal

model (containing many terms) which is believed to be adequate, and delete terms from the model,

one by one.

We could use the Likelihood Ratio Test as the criterion for deciding whether to add a term (or to

delete a term) at each step. However, this often results in models which are smaller than they should

be: the customary significance level α = 0.05 is an excessively stringent standard of evidence for

including a proposed term in the model. A better approach is to compare models using the AIC.

In stepwise model selection, choosing the model with the smaller AIC is equivalent to applying

the likelihood ratio test, but taking the critical value to be 2d where d is the number of degrees

of freedom, i.e. the number of added or deleted parameters. The significance level of this test is

α = 0.157,0.135,0.112 when d = 1,2,3, respectively, dropping below 0.05 when d = 8.

The stats package (included in a standard installation of R) provides functions add1, drop1,

and step to perform ‘automatic’ stepwise model selection. The MASS package provides stepAIC,

an improved version of step. These functions can be applied to many kinds of models, including

fitted point process models. The function drop1 compares a model with all the sub-models obtained

by deleting a single term, and evaluates the AIC for each sub-model. For example, to explore the

dependence of the intensity of the Swedish Pines data on the Cartesian coodinates, we could do:

> fitxy <- ppm(swedishpines

~

x + y)

> drop1(fitxy)

Single term deletions

Model:

~

x + y

Df AIC

<none> 844

x 1 843

y 1 842

The output indicates that the lowest AIC would be achieved by deleting the y term. Similarly add1

compares a model with all the ‘super-models’ obtained by adding a single term:

> fitsr <- ppm(swedishpines

~

1)

> add1(fitsr,

~

x+y)

Single term additions

Model:



SA
M
PL
E

Poisson Models 337

~

1

Df AIC

<none> 841

x 1 842

y 1 843

The output indicates that CSR has lower AIC than the models in which we add the term x or add

the term y.

The function step performs stepwise model selection using AIC. By default it performs back-

ward stepwise selection. Starting from a ‘maximal’ model, the procedure considers each term in the

model, and decides whether the term should be deleted. The deletion yielding the biggest reduction

in AIC is carried out. This is applied recursively until no more terms can be deleted (i.e. until all

further deletions would lead to an increase in AIC).

Continuing the example:

> fitxy <- ppm(swedishpines

~

x + y)

> fitopt <- step(fitxy)

Start: AIC=843.6

~

x + y

Df AIC

- y 1 842

- x 1 843

<none> 844

Step: AIC=841.6

~

x

Df AIC

- x 1 841

<none> 842

Step: AIC=840.8

~

1

> fitopt

Stationary Poisson proess

Intensity: 0.007396

Estimate S.E. CI95.lo CI95.hi Ztest Zval

log(lambda) -4.907 0.1187 -5.139 -4.674 *** -41.35

The output here is different from the output of drop1 or add1. At each step in the procedure, the

possible deletions are ranked in ascending order of AIC: the deletion giving the greatest reduction

in AIC is at the top of the table. The output shows that the term y was first deleted from the model,

and then the term x was deleted, leaving only the formula
~

1 corresponding to CSR.

In what follows, we set trae=0 to suppress the progress reports, so the output shows only the

final result. Larger values of trae give more information about the sequence of models considered.

The default is trae=1. For brevity one can use formula.ppm to extract the model formula:

> bigfit <- ppm(swedishpines

~

polynom(x,y,3))

> formula(bigfit)

~

x + y + I(x^2) + I(x * y) + I(y^2) + I(x^3) + I(x^2 * y) + I(x * y^2) + I(y^3)

> goodfit <- step(bigfit, trae=0)

> formula(goodfit)
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~

x + y + I(x * y) + I(y^2)

> AIC(goodfit)

[1℄ 841.5

The selected model goodfit has slightly larger AIC than the constant intensity model in fitopt.

This illustrates the fact that dropping terms one at a time is not guaranteed to produce the submodel

with minimal AIC.

Many other methods for model selection exist [154]. We also warn that there are some perils

in automatic model selection techniques: see [470]. See Section 13.5.11 for a discussion of model

selection using AIC for Gibbs point process models.

9.4.7 Simulating the fitted model

A fitted Poisson model can be simulated automatically using the function simulate.ppm. The

result of the commands X <- simulate(fitprop); plot(X[[1℄℄) is shown in Figure 9.12.

Figure 9.12. Simulated realisation of a Poisson model fitted to the Beilschmiedia data.

It is also possible to perform conditional simulation (conditional on the number of points, on

the configuration of points in a particular subregion, or on the presence of certain points). See

Section 13.9.1.4 or the help for rmhontrol.

9.4.8 Additional capabilities

Table 9.5 lists some additional generic functions defined in spatstat which have methods for

fitted models. For the full list, see Table 13.1 on page 508 and Table 13.5 on page 536, or type

methods(lass="ppm").

envelope Simulation envelopes of summary function
berman.test Berman’s tests
df.test Spatial CDF tests

quadrat.test χ2 test based on quadrat counts
leverage Leverage diagnostic
model.images Pixel images of the canonical covariates
relrisk Relative risk predicted by model
rhohat Relative intensity as a function of covariate

Table 9.5. Some of the generics defined in spatstat with methods for class "ppm" which are useful

for Poisson models.

The R generic function model.matrix computes the ‘design matrix’ of a model. For a Poisson

point process model, model.matrix.ppm returns a matrix with one row for each quadrature point,
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and one column for each of the canonical covariates appearing in (9.6). Note that, if the model

formula involves transformations of the original covariates, then model.matrix(fit) gives values

of these transformed covariates.

The spatstat package also defines a new generic function model.images with a method for

"ppm" objects. This produces a list of pixel images of the canonical covariates.

> fit2 <- ppm(bei

~

sqrt(grad) + x, data=bei.extra)

> mo <- model.images(fit2)

> names(mo)

[1℄ "(Interept)" "sqrt(grad)" "x"

Additionally spatstat has some functions that can be applied to any fitted model (of class "lm",

"glm", "ppm", etc.) to understand the structure of the model: model.ovariates determines

which of the original covariates in data are used in the model; model.depends identifies which of

the covariates is involved in each term of the model; model.is.additive determines whether the

model is additive; and has.offset determines whether the model has an offset.

9.5 Alternative fitting methods

Here we review alternative options for fitting the loglinear Poisson model in spatstat and related

packages.

Faster fitting

If ppm is called with the option method="logi", it fits the point process model using conditional

logistic regression, as described in Section 9.10. This method is typically faster than the default

technique, and often more reliable, but involves randomisation.

More robust fitting

The lasso [655] is an improvement to classical regression which increases its robustness against

anomalies or extremes in the data. The lasso version of linear regression, for example, finds the

parameter value θ that maximises RSS(θ)−α‖θ‖, where RSS(θ) is the usual sum of squared errors,

‖θ‖= ∑ j |θ j| is the sum of absolute values of all parameters, and α is a tradeoff coefficient. A lasso

version of ppm has been implemented in the R package ppmlasso [568, 567]. In a nutshell, this

approach will fit the same loglinear model as is fitted by ppm, but with less sensitivity to anomalous

observations. Variable selection for point process models using the lasso has recently been studied

[654, 709]. In future there may also be a Stein estimator [156].

9.6 More flexible models

Until this point in the chapter, we have been concerned exclusively with fitting loglinear Poisson

point process models. These models have a specially convenient structure in which the log intensity

is a linear function of the parameters. Note that the covariates can be quite general functions; so,

this is a very wide class of models.

However, there are many applications where we need to fit a model which does not have this
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loglinear form. An important example is in spatial epidemiology where the effect of a pollution

source may not be easily expressible in loglinear form.

Technique for building and fitting such models are reviewed below.

Generalised additive models

Modern regression tools, including machine learning algorithms [328], smooth function estimators

with roughness penalties, and semi-parametric models, allow more flexible modelling than classical

regression. Some of these tools are available for point process models in spatstat and related

packages.

For more flexible models of covariate effects, one standard tool is a generalised additive model

[327] in which the covariate effect is modelled as a polynomial or spline function and the model

is fitted by maximising L(θ)−αQ(θ), where Q(θ) is a penalty for the roughness of the function,

and again α is a tradeoff coefficient. These models can be fitted immediately in ppm by including

appropriate terms in the model formula, and setting use.gam=TRUE to ensure that the fitting is

performed by gam rather than glm. For example,

> ppm(gold

~

bs(dfault, 5), data=mur, use.gam=TRUE)

fits a model in which the log intensity of Murchison gold deposits is a smooth function of distance

to the nearest fault. Here bs is part of the standard splines package and provides a B-spline basis

for smooth functions.

General non-loglinear model

Often a model has a simple mathematical form, with some parameters ϕ that appear in loglinear

form, but other parameters ψ that do not. In the model

λ (u) = exp

(
ϕZ(u)+

1

1+ψY (u)

)

where Y (u),Z(u) are known covariate functions, the parameter ϕ appears in loglinear form, but the

parameter ψ does not. The principle of maximum likelihood can still be applied to estimate both

parameters (ϕ ,ψ), but the algorithm in ppm cannot be used to compute the maximum likelihood

estimate.

Instead, such models are usually fitted by maximum profile likelihood, as described in Sec-

tion 9.12. Two available algorithms for maximum profile likelihood are brute force maximisation,

implemented in spatstat by the function profilepl described in Section 9.12.2, and Newton’s

method, implemented in spatstat by ippm as described in Section 9.12.3. Specialised algorithms

also exist for particular models [236].

Local (‘geographically weighted’) models

In some studies, we may be willing to assume a simple loglinear model, but not willing to assume

that the model parameters are constant across the entire study region. For example in the Queensland

copper data (Figure 1.11) we may be willing to assume a loglinear relationship between the intensity

of copper deposits and distance to the nearest lineament, λ (u) = exp(α + βd(u)), but we might

believe that the coefficients α and β are spatially varying because of the geological history.

Models of this kind can be fitted using the methods of local likelihood [335, 428], also known

in this context as geographically weighted regression [267]. Code for this purpose will be added to

spatstat shortly. For details, see Section 9.13.
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9.7 Theory∗

This section covers the theory which underpins the methods for fitting a Poisson point process

model to a point pattern dataset. Since there has been some confusion in the literature, we shall go

to some lengths to explain maximum likelihood estimation for Poisson point processes. See also

[484, chapter 3], [396].

9.7.1 Introduction to maximum likelihood

In mainstream statistical methodology, a standard way to fit models to data is by maximising the

likelihood of the model for the data. For any choice of parameter values, the likelihood value

is defined as the probability (or probability density) that the given observations would have been

obtained, from the model with these parameter values. For different possible values of the model

parameters, the likelihood gives a measure of relative plausibility of these values. The parameter

values which maximise the likelihood are the ‘most plausible’ values, and are called the maximum

likelihood estimates (MLE).

Maximum likelihood is theoretically the optimal method for parameter estimation, provided (a)

the model is true, (b) the model satisfies regularity conditions, and (c) there are many observations

and few parameters. Under these conditions, the MLE is more precise than other estimators. The

MLE is always logically consistent with the data. However, maximum likelihood can perform

poorly if the model is wrong (even if it is only slightly wrong) or if the data contain anomalies.

As an example, suppose that we have counted the number n of insects caught in a trap, and

we believe this number follows a Poisson distribution with some mean µ . Our goal is to infer

(‘estimate’) the value of µ from the data. The likelihood is

L(µ) = e−µ µn

n!

from (5.4), where n is the observed number of insects. When we want to stress that this is the

likelihood for µ given the data n, we may write L(µ) = L(µ ;n). We need to find the value of µ
which gives the maximum value of L(µ). It is easier to work with the natural logarithm of the

likelihood,

logL(µ) =−µ +n logµ − log(n!)

and maximising logL is equivalent to maximising L. Take the derivative of logL(µ) with respect to
µ (known as the score function or simply the score):

U(µ) =U(µ ;n) =
d

dµ
logL(µ) =−1+

n

µ
.

The likelihood is maximised when U(µ) = 0, which gives µ = n. That is, the maximum likelihood

estimate of µ is µ̂ = n, the observed number of insects.

Note that the term log(n!) disappeared in the score. This always happens to additive terms

in the loglikelihood (or equivalently multiplicative factors in the likelihood) that only depend on

data and not the parameters. Since such terms do not affect the location of the maximum of the

(log)likelihood it is common practice to leave them out and still call the function the (log)likelihood.

∗ Starred sections contain advanced material, and can be skipped by most readers.
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9.7.2 Maximum likelihood for CSR

For simplicity we start with the homogeneous Poisson point process (CSR). This model has a single

parameter λ , the intensity of the process. Assume we have observed a point pattern x inside a spatial

window W . The likelihood function is

L(λ ) = L(λ ;x) = λ n(x)e(1−λ )|W | (9.34)

where n(x) is the number of points of x. The right-hand side is the probability density of observing

the pattern x if the true intensity is λ . Notice that this probability density depends only on the

number of points, and not on their location, because all spatial locations are equally likely under

CSR. The point locations are ‘ancillary’ for λ .
More details about point process likelihoods are given in Section 13.12.1. For the moment,

it is useful to appreciate why the likelihood (9.34) consists of two terms, one associated with the

data x and the other with the window W . Imagine that space is divided into pixels of area a, as

illustrated in Figure 5.20 on page 144. If a is small, there is negligible chance that any pixel will

contain more than one point, so that each pixel contains either 1 point (with probability λa) or

0 points (with probability 1− λa). Pixels are independent of each other, so the probability of a

particular configuration of zeroes and ones is obtained by multiplying together the probabilities of

the outcomes for each separate pixel. If there are n pixels which contain random points, the presence

probability λa will appear n times, giving a factor of λ nan. For the remaining pixels, which do not

contain random points, the contribution to the probability is (1−λa)m where m is the number of

these pixels. Since m is large and a is small, the second term is close to e−λ |W |. Thus, ignoring some

rescaling,5 the first term in the likelihood (9.34) is the probability of observing the data points in x,

and the second term is the probability of not observing any other points in the window W .

The likelihood (9.34) is conventionally used in theoretical work, but as mentioned at the end of

Section 9.7.1 the constant factor e|W | can be omitted. Thus the likelihood we use in practice is

L(λ ) = λ n(x)e−λ |W |. (9.35)

The maximum likelihood estimate (MLE) of the intensity λ is the value λ̂ which maximises L(λ )
defined in (9.35). As before it is easier to work with the logarithm of the likelihood, which in this

case is

logL(λ ) = n(x) logλ −λ |W |. (9.36)

The score (derivative of the loglikelihood) is

U(λ ) =U(λ ;x) =
d

dλ
logL(λ ) =

n(x)

λ
−|W |. (9.37)

The maximum of the likelihood is attained when this derivative is zero, so the MLE is

λ̂ =
n(x)

|W |
. (9.38)

That is, the maximum likelihood estimate λ̂ is the average intensity of x, a good ‘commonsense’

estimate of the intensity λ .
Another way to estimate the intensity λ would have been to use the ‘method of moments’. We

would equate the observed number of points, n(x), to the theoretically expected number of points,

En(X∩W) = λ |W |, and solve the equation λ |W |= n(x) for λ , yielding λ̂ = n(x)/|W |. In this case,
the method-of-moments estimate agrees with the MLE.

5The point process likelihood is conventionally measured relative to the probability for a Poisson process of rate 1. To do

this we divide the value obtained above, λ nane−λ |W |, by the corresponding value for a Poisson process of intensity λ = 1,

namely ane−|W | (which is a constant only depending on data, not the parameter), finally yielding λ ne(1−λ )|W |.
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9.7.3 Maximum likelihood for general Poisson process

Maximum likelihood estimation for Poisson point processes is treated extensively in [565, 396].

9.7.3.1 General form of likelihood

Now consider a general, inhomogeneous Poisson process model, governed by a parameter θ. This

model states that the intensity is λθ(u) where the value of θ is to be estimated. The likelihood for θ

is

L(θ) = L(θ;x) = λθ(x1)λθ(x2) . . .λθ(xn)exp(

∫

W
(1−λθ(u))du) (9.39)

where x1, . . . ,xn are the points of x. This can be derived by pixel approximation as described above.

This probability density does depend on the locations of the data points xi, because the intensity

function λθ(u)makes some locations more likely than others. Therefore the data on spatial locations

xi, and not just the total number of points, are needed for model-fitting.

The loglikelihood for θ is

logL(θ) =
n

∑
i=1

logλθ(xi)−

∫

W
λθ(u)du (9.40)

where we have omitted the constant term
∫

W 1du = |W |.

The MLE θ̂ is usually not a simple function of the data, and must be computed by maximising

the likelihood numerically. In general, with no assumptions on the way λθ(u) depends on θ, the
likelihood function might behave poorly, and might not have a unique maximum. Further analysis

depends on assuming more about the intensity model.

9.7.3.2 Maximum likelihood for baseline model

One Poisson model that is easy to analyse is that in which the intensity is an unknown multiple of a

known baseline (9.3). The loglikelihood (9.40) is

logL(θ ) =
n

∑
i=1

log(θ b(xi))−

∫

W
θ b(u)du = n logθ +

n

∑
i=1

logb(xi)−θ

∫

W
b(u)du. (9.41)

The loglikelihood is differentiable with respect to θ for fixed x, even if b(u) is not a continuous

function. The score is

U(θ ) =
d

dθ
logL =

n(x)

θ
−
∫

W
b(u)du. (9.42)

If there are no constraints on θ , the maximum likelihood estimate (MLE) of θ is the solution of the

score equation U(θ ) = 0, which is

θ̂ =
n(x)∫

W b(u)du
. (9.43)

This is also the method-of-moments estimate, because under the baseline model, the expected total

number of points is

Eθ [n(X)] =

∫

W
λθ (u)du = θ

∫

W
b(u)du

so that θ̂ is the solution of n(x) = Eθ [n(X)].
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9.7.4 Maximum likelihood for loglinear Poisson models

9.7.4.1 Loglinear models

For the vast majority of Poisson models treated in this book, the intensity is a loglinear function of

the parameters:

λθ(u) = exp(B(u)+θ⊤Z(u)) (9.44)

where B(u) is a known function (the ‘offset’ or ‘log baseline’), θ = (θ1, . . . ,θp) is the vector of

parameters, Z(u) = (Z1(u), . . . ,Zp(u)) is a vector of covariate functions, and

θ⊤Z(u) = θ1Z1(u)+ · · ·+θpZp(u).

Note that the model implies that the logarithm of the intensity is a linear function of the parameters:

logλθ(u) = B(u)+θ⊤Z(u). (9.45)

The functions B and Z1, . . . ,Zp could be spatially varying in any fashion, so this is a very wide and

flexible class of models.

The loglinear intensity model has several advantages. The intensity of a point process must be

greater than or equal to zero, and this is always satisfied by the loglinear model, regardless of the

value of θ and the values of the functions B and Z1, . . . ,Zp, because of the exponent in (9.44). In

statistical theory the logarithm is the ‘canonical’ transformation of the mean for a Poisson model,

and this confers many advantages in theory and practice.

9.7.4.2 Likelihood for loglinear model

For the loglinear intensity the loglikelihood takes the form

logL(θ) =
n

∑
i=1

B(xi)+θ
T

n

∑
i=1

Z(xi)−

∫

W
exp(B(u)+θTZ(u))du. (9.46)

This model is a canonically parametrised exponential family [80, p. 113], [416, pp. 23–24]. The

loglikelihood (9.46) is a concave function of the parameter θ, and is differentiable with respect to

θ, even if the functions B and Z j are not continuous. If the matrix

M =

∫

W
Z(u)Z(u)T du

is positive definite, then the model is identifiable. If the data are such that ∑i Z j(xi) 6= 0 for all j, the

MLE exists and is unique. Unless there are further constraints on θ, the MLE is the solution of the

score equations U(θ) = 0, where the score function is

U(θ) = U(θ;x) =
n(x)

∑
i=1

Z(xi)−

∫

W
Z(u)λθ(u)du. (9.47)

The score is a vector U(θ;x) = (U1(θ;x), ...,Up(θ;x)) with components

U j(θ;x) =
n(x)

∑
i=1

Z j(xi)−
∫

W
Z j(u)λθ(u)du

for j = 1, . . . , p. The integral in (9.47) is the Laplace transform of Z, which is generally intractable,

so that in general the score equations cannot be solved analytically.
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9.7.4.3 Accuracy of maximum likelihood estimate

In many statistical models, as the sample size increases, the maximum likelihood estimator θ̂ fol-

lows a standard pattern of behaviour. It is a consistent estimator (it converges in probability to the

true answer θ), and it asymptotically follows a normal distribution, with mean equal to the true

parameter vector θ, and variance Iθ
−1, where Iθ is the Fisher information matrix. The Fisher

information is defined as the variance-covariance matrix of the score:

Iθ = varθ [U(θ;X)] = Eθ

[
U(θ;X)U(θ;X)⊤

]
= Eθ

[
−

∂

∂θ
U(θ;X)

]
(9.48)

where Eθ and varθ denote the mean and variance when the true parameter value is θ. The negative

Hessian matrix

H(θ;x) =−
∂

∂θ
U(θ;x) (9.49)

when evaluated at θ = θ̂ is called the observed information, while the Fisher information is some-

times called the expected information.

For the loglinear Poisson point process model, asymptotic distribution theory is available [565,

396, 34] and the results conform to the pattern described above. Under suitable conditions,6 the

MLE θ̂ is consistent, asymptotically normal, and asymptotically efficient in a ‘large domain’ limit-

ing regime [565, Theorem 11, pp. 135–136], [396, Thm. 2.4, p. 51], [393]. The Hessian is

H(θ;x) =
∫

W
Z(u)Z(u)Tλθ(u)du. (9.50)

Since the Hessian does not depend on the data x, it is equal to the Fisher information Iθ. The Fisher

information is a matrix with entries (on row i, column j)

(Iθ)i j =

∫

W
Zi(u)Z j(u)λθ(u)du.

This is the basis of calculations of standard error and confidence intervals for Poisson models in

spatstat. Asymptotic theory is also available [565, 396] to support the likelihood ratio test.

The integral in the loglinear Poisson process likelihood (9.46) is the Laplace transform of the

covariate function Z, which is not usually available in closed form. Consequently, it is not usually

possible to find an exact analytic solution for the maximum likelihood estimate. Some form of

numerical approximation is required. Strategies are presented in the next sections.

9.8 Coarse quadrature approximation∗

The likelihood function (9.40) of a Poisson point process involves an integral over the spatial

window. Except in special cases, this means that the likelihood cannot be computed exactly, but

must be approximated numerically.

A good strategy is to set up the approximation so that that the approximate likelihood function

is equivalent to the likelihood of another, simpler, statistical model which we know how to handle.

Then using statistical techniques for the simpler model, we can compute approximate parameter

6The ‘suitable conditions’ are essentially that every entry in the Fisher information matrix should be large, and that

regularity conditions hold.

∗ Starred sections contain advanced material, and can be skipped by most readers.
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estimates for the original, complex model. This strategy has been used in statistical science since

earliest times.

For a point process model, approximation of the likelihood converts the point process into a re-

gression model. Lewis [419] and Brillinger [124, 126, 125] showed that the likelihood of a general

point process in one-dimensional time, or a Poisson point process in higher dimensions, can be use-

fully approximated by the likelihood of logistic regression for the discretised process. Asymptotic

equivalence was established in [101]. This makes it practicable to fit spatial Poisson point process

models of general form to point pattern data [90, 158, 50, 51] by enlisting efficient and reliable soft-

ware already developed for generalized linear models. The approximation has effectively reduced

the problem to a standard statistical model-fitting task. Approximation of a stochastic process by a

generalized linear model is now commonplace in applied statistics [424, 425, 427, 426].

9.8.1 Berman-Turner device

Numerical quadrature is a simple and efficient computational strategy for numerical integration, in

which the integral
∫

W f (u)du of some function f is approximated by a weighted sum ∑ j w j f (u j) of
values of the function at a finite list of ‘quadrature points’ u j which have ‘quadrature weights’ w j.

9.8.1.1 Berman-Turner quadrature

Berman and Turner [90] developed a numerical quadrature method for approximate maximum like-

lihood estimation for an inhomogeneous Poisson point process. Suppose we approximate the inte-

gral in (9.40) by a finite sum using any quadrature rule,

∫

W
λθ(u)du ≈

m

∑
j=1

λθ(u j) w j (9.51)

where u j, j = 1, . . . ,m are points in W and w j > 0 are quadrature weights summing to |W |. This
yields an approximation to the loglikelihood,

logL(θ)≈
n(x)

∑
i=1

logλθ(xi)−
m

∑
j=1

λθ(u j) w j. (9.52)

Berman and Turner observed that if the list of points {u j, j = 1, . . . ,m} includes all the data points

{xi, i = 1, . . . ,n}, then we can rewrite (9.52) as a sum over quadrature points:

logL(θ)≈
m

∑
j=1

(I j logλ j −w jλ j) (9.53)

where λ j = λθ(u j) and

I j =

{
1 if u j is a data point

0 if u j is a dummy point.
(9.54)

Berman and Turner [90] re-expressed this as

logL(θ)≈
m

∑
j=1

(y j logλ j −λ j) w j (9.55)

where y j = I j/w j, and noted that the right side of (9.55), for fixed x, is formally equivalent to the

weighted loglikelihood of independent Poisson variables Yj ∼ Poisson(λ j) taken with weights w j.

The expression (9.55) can therefore be maximised using standard software for fitting generalised

linear models [458].
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Later it was pointed out [459] that (9.53) is the unweighted loglikelihood of independent Poisson

variables I j ∼ Poisson(w jλ j).

The main attraction of the Berman-Turner device is that the use of standard statistical packages

rather than ad hoc software confers great advantages in applications. Modern statistical packages

have a convenient notation for statistical models [7, 142, 669] which makes it very easy to specify

and fit a wide variety of models. Algorithms in the package may allow one to fit very flexible model

terms such as the smooth functions in a generalised additive model [327]. Interactive software

allows great freedom to reanalyse the data. The fitting algorithms are typically more reliable and

stable than in homegrown software. This approach is the basis of spatstat.

In summary, the procedure is as follows: (1) generate a set of dummy points, and combine it with

the data points xi to form the set of quadrature points u j; (2) compute the quadrature weights w j; (3)

form the indicators I j as in (9.54) and calculate y j = I j/w j; (4) compute the (possibly vector) values

z j = Z(u j) of the covariates at each quadrature point; (5) invoke standard model-fitting software,

specifying that the model is a loglinear Poisson regression logλ j = θ
Tz j, to be fitted to the responses

y j and covariate values z j, with weights w j; (6) the coefficient estimates returned by the software

give the (approximate) MLE θ̂ of θ.

In the spatstat implementation, step (5) is performed by the standardRmodel-fitting functions

glm or gam. The estimates of standard errors returned by glm are also valid for the Poisson point

process, because both the weighted loglinear Poisson regression and the loglinear Poisson point

process model are canonically parametrised: they have the property that the Fisher information is

equal to the negative Hessian of the loglikelihood, The negative Hessians of the two models are

approximately equal by (9.55). Additionally glm returns the deviance D of the fitted model; this is

related to the loglikelihood of the fitted model by

− logL(θ̂;x) =
D

2
+

m

∑
j=1

I j logw j +n(x) (9.56)

where the sum is effectively over data points only.

Conveniently, the null model λ j ≡ λ in the weighted loglinear Poisson regression corresponds

to the uniform Poisson point process with intensity λ . The MLE is λ̂ = n(x)/∑ j w j = n(x)/|W |

with corresponding loglikelihood logL(λ̂ ) = n(x) [logn(x)− log |W |−1] .

Note that this formulation assumes λ (u) is positive everywhere. Zero values are also permis-

sible, provided the set of zeroes does not depend on θ. Thus we formally allow negative infinite

values for Z(u). In the approximation (9.52) all points u j with λ (u j) = 0 will be dummy points.

Their contribution is zero and so they should be omitted in all contexts.

9.8.1.2 Design of quadrature schemes

Berman and Turner [90] used the Dirichlet tessellation or Voronoï diagram [521] to generate quadra-

ture weights. The data points are augmented by a list of dummy points; then the Dirichlet tessel-

lation of the combined set of points is computed as sketched in the left panel of Figure 9.13. The

quadrature weight w j associated with a (data or dummy) point u j is the area of the corresponding

Dirichlet tile.

It is computationally cheaper to use the counting weights proposed in [50]. In the simplest

form we assign equal weight to each quadrature point, namely w j = |W |/m. In general we divide

the window into ‘tiles’, and all quadrature points within a given tile T receive the same weight

w j = |T |/k where k is the number of quadrature points in T . The right panel of Figure 9.13 shows

an example where W is partitioned into equal rectangular tiles.

Other choices of quadrature scheme have been explored in [50, 412].
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Figure 9.13. Quadrature schemes for a point pattern dataset. Data points (•), dummy points

(+), and tile boundaries (grey lines). Left: Dirichlet tiles and weights. Right: rectangular tiles,

‘counting weights’. Coarsely spaced example for illustration only.

9.8.1.3 Quadrature schemes in spatstat

The spatstat function ppm fits a point process model to an observed point pattern. By default, it

uses Berman-Turner quadrature approximation.

In normal use, the quadrature scheme is generated automatically from the data point pattern,

so the user does not need to think about it. However, the default quadrature scheme may give

unsatisfactory results in some cases. The default rules for building a quadrature scheme are designed

so that ppm will execute quickly, rather than guaranteeing a highly accurate result.

Users who wish to override the defaults may modify the rules for building a quadrature scheme,

or may even provide their own quadrature scheme.

Quadrature schemes are created by the function quadsheme:

quadsheme(data, dummy, ..., method="grid")

The arguments data and dummy specify the data and dummy points, respectively.

quadsheme(X) default for data pattern X
quadsheme(X, nd=128) dummy points in 128×128 grid
quadsheme(X, eps=0.1) dummy point spacing 0.1 units
quadsheme(X, random=TRUE) stratified random dummy points
quadsheme(X, quasi=TRUE) quasirandom dummy points
quadsheme(X, D) data X, dummy D

Table 9.6. Typical options for controlling the dummy points in a quadrature scheme (options are

passed to default.dummy).

For the dummy points, there is a sensible default, provided by default.dummy(X). Table 9.6

shows some of the important options for modifying the default dummy pattern. By default, the

dummy points are arranged in a rectangular grid; recognised arguments include nd (the number of

grid points in the horizontal and vertical directions) and eps (the spacing between dummy points).

If random=TRUE, a systematic random (also called stratified random) pattern of dummy points is

generated instead. If quasi=TRUE, a quasirandom pattern of dummy points is generated.

Alternatively the dummy point pattern may be specified arbitrarily and given in any format

recognised by as.ppp. There are functions for creating special dummy patterns including orners,
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gridentres, stratrand, and spokes. It is also possible to generate dummy points according

to a quasirandom scheme, using the functions Halton and Hammersley. Quasirandom patterns fill

the space uniformly but without any obvious regularities: they may be preferable to regular grids.

quadsheme(X, ..., method="d") specify Dirichlet weights
quadsheme(X, ..., ntile=8) 8×8 array of counting tiles

Table 9.7. Typical options for controlling the quadrature weights.

The quadrature weights are determined by further arguments to quadsheme. If method =

"grid" (the default) the window is divided into an ntile[1℄ by ntile[2℄ grid of rectangular

tiles, and the ‘counting weights’ are applied: the weight for each quadrature point is the area of a

tile divided by the number of quadrature points in that tile. By default the values ntile and nd are

the same so all tiles (except the corners) contain exactly one dummy point as illustrated in the right

panel of Figure 9.13. If method="dirihlet", the quadrature points (both data and dummy) are

used to construct the Dirichlet tessellation. The quadrature weight of each point is the area of its

Dirichlet tile inside the quadrature region.

A quadrature scheme (consisting of the original data point pattern, an additional pattern of

dummy points, and a vector of quadrature weights for all these points) is represented by an ob-

ject of class "quad". In principle, the user could create one of these objects from scratch, using the

creator function quad. More details of the software implementation of ppm are given in [50, 51, 52]

and particularly [54].

9.8.1.4 Gorilla nests example

In Section 9.3.4.1 we fitted a simple model to the gorillas data in which the intensity is constant

inside each region defined by vegetation type:

> ppm(gor

~

vege, data=gex)

Nonstationary Poisson proess

Log intensity:

~

vege

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Interept) 2.3238 0.1060 2.1161 2.5316 *** 21.923

vegeColo 2.0817 0.5870 0.9312 3.2322 *** 3.546

vegeGras -0.7721 0.2475 -1.2571 -0.2871 ** -3.120

vegePrim 2.1148 0.1151 1.8892 2.3403 *** 18.373

vegeSeo 1.1341 0.2426 0.6586 1.6096 *** 4.675

vegeTran 1.6151 0.2647 1.0964 2.1339 *** 6.102

Fitting this model by maximum likelihood is equivalent to estimating the intensities using quadrat

counts. To check this, we convert the pixel image to a tessellation and apply quadrat counting:

> vt <- tess(image=gex$vege)

> intensity(quadratount(gor, tess=vt))

tile

Dist Colo Gras Prim Seo Tran

10.201 69.155 4.781 84.012 32.651 50.922

Again there are discrepancies due to discretisation of the integral in ppm in the Berman-Turner tech-

nique. Better agreement can be obtained by increasing the density of dummy points, for example,

using the parameter nd:

> fitveg2 <- ppm(gor

~

vege - 1, data=gex, nd=256)

> exp(oef(fitveg2))
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vegeDist vegeColo vegeGras vegePrim vegeSeo vegeTran

10.188 69.040 4.786 83.807 32.329 51.199

Exact agreement (up to numerical rounding error) can be obtained by using a quadrature scheme

with one point at each pixel of the covariate image. This is constructed by the command pixelquad:

> Q <- pixelquad(gor, gex$vege)

> fitveg3 <- ppm(Q

~

vege - 1, data=gex)

> exp(oef(fitveg3))

vegeDist vegeColo vegeGras vegePrim vegeSeo vegeTran

10.201 69.155 4.781 84.012 32.651 50.922

9.8.1.5 Covariate values known only at some locations

In practice, covariate values may only be available at a small set of spatial sample locations. For

example, measuring a covariate at a given location may require digging a bore hole at that loca-

tion, or physically extracting material, or performing a complicated chemical assay. It may require

the presence of a sensor at that location, such as a weather station or a ship. Some astronomical

measurements require the fortuitous presence of a light source behind the region of interest.

One strategy for dealing with this situation is to estimate the covariate values at other loca-

tions by interpolating between the observed values. One could use the Nadaraya-Watson smoother

(Section 6.9), or kriging interpolation, or many other methods.

An alternative strategy is to build a coarse quadrature scheme using only the available sample

locations. This is more faithful to the observations, and avoids some potential artefacts of the

smoothing. If X is the observed point pattern and D the pattern of locations where covariate values

have been observed, then quadsheme(X, D) will build a quadrature scheme using these points.

Additional arguments determine the weighting scheme: we recommend the Dirichlet weights. The

corresponding covariate values should be organised in a data frame, with one column for each

covariate, and one row for each quadrature point (the points of X are listed first, followed by the

points of D). This data frame can then be passed to ppm as the argument data.

Just to demonstrate that this is possible, we take the gorilla nests data analysed above, and

pretend that the land condition was only recorded at certain locations, namely the gorilla nest sites

gor and some arbitrarily chosen sample locations samp:

> dfdata <- as.data.frame(lapply(gex, "[", i=gor))

> samp <- rSSI(0.5, 42, Window(gor))

> dfsamp <- as.data.frame(lapply(gex, "[", i=samp))

The previous model can be fitted to these data by building a quadrature scheme based on the avail-

able locations:

> G <- quadsheme(gor, samp, method="d")

> df <- rbind(dfdata, dfsamp)

> fitdf <- ppm(G

~

vege - 1, data=df)

> exp(oef(fitdf))

vegeDist vegeColo vegeGras vegePrim vegeSeo vegeTran

9.765 24.175 5.468 93.612 20.337 26.731

We emphasise that covariate values must be available at all data points and at some non-data points.

If covariate values have only been observed at the data points, it is effectively impossible to fit a

point process model in which the presence or absence of points depends on the covariate value.
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9.9 Fine pixel approximation∗

9.9.1 Pixel counts

Another quadrature strategy for approximating the Poisson process likelihood is to divide the win-

dow W into small pixels of equal area a. The integral over the window W is then approximated by

a sum over pixels: ∫

W
λθ(u)du ≈ ∑

j

λθ(u j)a (9.57)

where u j is the centre of the jth pixel. We also discard the exact locations of the data points, and

effectively move each data point to the centre of the pixel which contains it. Thus we approximate

the sum over data points by a sum over pixels,

∑
i

logλθ(xi)≈ ∑
j

n j logλθ(u j) (9.58)

where n j is the number of data points falling in the jth pixel. Collecting (9.57) and (9.58), we

approximate the true loglikelihood (9.40) by

logL(θ)≈ ∑
j

[n j logλθ(u j)−λθ(u j)a] = ∑
j

(n j logλ j −λ ja) (9.59)

where λ j = λθ(u j). The adequacy of this approximation is discussed in Section 9.9.4.

2 0 1 2 0 1 0
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1 2 1 2 1 1 0

2 2 1 0 4 2 2

2 1 0 3 0 5 3
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2 2 1 2 3 0 2

1 0 1 1 0 1 0

0 1 1 1 1 0 0

1 1 1 1 1 1 0

1 1 1 0 1 1 1

1 1 0 1 0 1 1

1 1 1 0 1 0 1

1 1 1 1 1 0 1

Figure 9.14. Pixel counts (Left) and presence-absence indicators (Right) for the same point pattern.

The right-hand side of (9.59) has the same form as the loglikelihood of independent Poisson

random variables N j with means aλ j. This was to be expected, because the pixel counts N j are

independent Poisson random variables, and aλ j is an approximation to the true mean of N j.

For a loglinear Poisson point process model (9.44), we have

λ j = λθ(u j) = exp(B(u j)+θ
⊤Z(u j)) = exp(b j +θ

⊤z j) (9.60)

where b j = B(u j) and z j = Z(u j). So the right-hand side of (9.59) is the loglikelihood of indepen-

dent Poisson random variables N j with means

µ j = aλ j = exp(loga+b j +θ
⊤z j) = exp(logo j +θ

⊤z j) (9.61)

∗ Starred sections contain advanced material, and can be skipped by most readers.
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where o j = loga+b j. This is loglinear Poisson regression with regression covariates z j and offset

o j = b j + loga.

A practical strategy for fitting a loglinear Poisson point process model is therefore: (1) divide

the window W into a fine grid of pixels of area a; (2) count the number n j of data points falling in

each pixel j; (3) evaluate the offset term o j = loga+B(u j) and the covariate vector z j = Z(u j) at
the centre u j of each pixel j; (4) use standard statistical software (such as the glm function in R)

to fit (by maximum likelihood) a loglinear Poisson regression model with responses n j, regression

covariates z j, and offsets o j; (5) the fitted coefficients θ̂ for the loglinear Poisson regression are the

approximate maximum likelihood estimates θ̂ for the loglinear Poisson point process model (9.44).

9.9.2 Pixel presence-absence indicators

A further simplification is to replace the counts n j by presence-absence indicators I j = 1
{

n j > 0
}

which tell us whether data points were present (I j = 1) or absent (I j = 0) in each pixel j. See the

right panel of Figure 9.14. The presence-absence indicators are independent random variables, so

their loglikelihood is the binomial

logL = ∑
j

(I j log p j +(1− I j) log(1− p j)) (9.62)

where p j denotes the probability that there are any data points in pixel j. Using the same approxima-

tion (9.57) we have p j =P
{

I j = 1
}
=P

{
N j ≥ 1

}
= 1−e−µ j = e−aλ j . For a loglinear Poisson point

process model (9.44), substituting (9.61) we get p j = 1−exp(−exp(o j +θ
⊤z j)), and inverting this

relationship gives

log(− log(1− p j)) = o j +θ
⊤z j (9.63)

where the offset o j is

o j = b j + loga. (9.64)

The transformation log(− log(1− p)) is called the complementary log-log link. Thus, the presence-

absence indicators follow a binary complementary log-log regression with offset o j and regression

covariates z j as before.

Thus, the correct way to analyse the presence-absence indicator data from a loglinear Poisson

point process is to fit a complementary log-log regression, using the offset (9.64) to account for

pixel size. This ensures that estimates of θ obtained using pixel grids of different size are exactly

compatible. The parameter estimates θ̂ obtained from this procedure are estimates of the parameters

of the loglinear Poisson point process model (9.44).

9.9.3 Logistic regression in a fine pixel grid

There is a further simplification when the pixels are so small that they have negligible chance of

containing more than one data point. Given that N j ≤ 1 for all pixels j, the conditional probability

that N j = 1 is

p∗j = P
{

N j = 1 | N j ≤ 1
}
=

P
{

N j = 1
}

P
{

N j ≤ 1
} =

P
{

N j = 1
}

P
{

N j = 0
}
+P

{
N j = 1

} .

Using the formula for the Poisson probabilities (5.4) this is

p j =
µ j exp(−µ j)

exp(−µ j)+µ j exp(−µ j)
=

µ j

1+µ j

and similarly the conditional probability that N j = 0 is 1− p∗j = 1/(1+ µ j). We find that p∗j/(1−
p∗j) = µ j so that the odds of presence (that is, the ratio of the presence probability divided by the
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absence probability) is equal to µ j. For a loglinear Poisson process, substituting (9.61) and taking

the logarithm gives

log

(
p∗j

1− p∗j

)
= o j +θ

⊤z j (9.65)

saying that the log odds of presence is equal to a linear function of the parameters. The transforma-

tion log(p/(1− p)) is called the logistic link, and (9.65) states that the presence-absence indicators

follow a logistic regression with offset o j as in (9.64) and covariates z j as before. Thus, if the prob-

ability of getting more than one point in a pixel is negligible, the presence-absence indicators I j

approximately satisfy a logistic regression with the same linear predictor.

For computation and for statistical inference, logistic regression has some practical advantages

over complementary log-log regression, because the logistic link is the ‘canonical link’ for binary

regression [458]. In logistic regression the estimated variance-covariance matrix of θ̂ depends only

on θ̂, whereas for complementary log-log regression it depends on x as well.

Pixel-based logistic regression for point events was pioneered in geology by F.P. Agterberg [4]

on the suggestion of J.W. Tukey [658]. It was later independently rediscovered in archaeology

[604, 326, 397, 398] and is now a standard technique in GIS applications [116].

Despite its popularity, pixel logistic regression does not seem to be universally well understood.

Some writers describe it as a ‘nonparametric’ technique [399, p. 24]. The interpretation of the fitted

parameters is widely held to be obscure [698, p. 175] and is typically based only on the sign of the

slope parameters, that is, parameters other than the intercept [288, pp. 405–407].

Contrary to these statements, there is a clear physical meaning for the model parameters of

(pixel-based) logistic regression when pixels are sufficiently small. The model is effectively a Pois-

son point process with loglinear intensity (9.6): see [34, 691]. This is a relatively simple parametric

model. The fitted parameters of the logistic regression have a direct interpretation as the parameters

of the Poisson point process (provided the model is fitted using an offset that includes the logarithm

of pixel area). The known properties of the Poisson model (Section 9.2.1) enable us to make nu-

merous predictions about quantities of interest, such as the expected number of points in a target

region, the probability of exactly k points in a target region, and the distribution of distance from a

fixed starting location to the nearest random point. See Section 9.4.3.

9.9.4 The effect of pixel size

The need for small pixels

By converting a spatial point pattern into an array of pixel counts or pixel presence-absence indi-

cators, we have effectively aggregated the individual points into groups. Each group consists of

the points that fall in a given pixel. Normally the pixels would be so small that at most one point

would fall in each pixel (unless of course there are duplicated points). The theory above relies on

this approximation (9.58) and the corresponding approximation for the expected number of points

in the pixel (9.57).

But how small is ‘small enough’? This was investigated in [34]. The adequacy of the approx-

imation depends on the spatial regularity of the function Z, spelt out in [34, Theorem 10]. In the

most optimistic case, Z is constant within each pixel,

Z(u) = z j for u ∈ S j, (9.66)

so that (9.57) and (9.58) are exact equations rather than approximations, and the loglikelihoods

(9.59) and (9.62)–(9.64) are the exact loglikelihoods. Covariates of this kind include factor-valued

classifications relating to ownership and management, and classifications of terrain into large geo-

logical units. In the next best case, Z is a smooth function.7 Then (9.57), (9.58), (9.59), and (9.62)–

7Here Z should be a Lipschitz function, i.e. ||Z(u)−Z(v)|| ≤C||u− v|| where C < ∞ is constant.
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(9.64) are good approximations when the pixels are small. Examples include distance transforms

(e.g., Z(u) is the distance from u to the nearest geological fault), spatial coordinates, and kernel-

smoothed geochemical assay values. In the least optimistic case, Z is a discontinuous function, such

as the indicator of a very irregular spatial domain such as a rock outcrop. The approximations (9.59)

and (9.62)–(9.64) can then give rise to considerable bias, even for quite small pixel sizes [34].

Replacing pixel counts by presence-absence indicators causes a loss of statistical efficiency

(i.e. variance of the estimator increases). A rule-of-thumb [34] is that the relative efficiency (ratio

of variances, assuming the same size of data) is µ̄/(eµ̄ − 1) ≈ 1− µ̄/2 where µ̄ = 1
N ∑ µ j is the

average expected number of points per pixel, estimated by n(X)/N, the observed average number

of data points per pixel. To ensure the loss of efficiency is less than 10%, we would require µ̄ < 0.2,
which would normally be satisfied in practice. Logistic regression involves a further approximation

in which we say there is a negligible probability of getting more than one point in the same pixel, in

any pixel. This again is not a very onerous condition, as shown in [34].

In summary, the accuracy of the pixel approximation depends mainly on the spatial irregularity

of the covariates. Very small pixels may be necessary if the covariates are highly irregular.

Problems with small pixels

If very small pixels are used, practical problems can arise. There will be a very large number of

pixels, and hence a large amount of data to handle. Software for logistic regression may not be de-

signed for large amounts of data; for example, computing the likelihood simply by summing all the

individual terms in (9.62) could lead to numerical overflow. In a fine pixellation, the overwhelming

majority of pixels do not contain a data point, so the overwhelming majority of indicator values

I j are equal to zero. This causes numerical instability (leading to error messages about singular

matrices, for example). It also causes some of the associated statistical tools to fail or behave un-

expectedly, due to the Hauck-Donner effect [330], essentially the breakdown of the delta-method

approximation.

One valid strategy for avoiding these problems is to take only a random sample of the zero-pixels

(the pixels with I j = 0), as discussed in Section 9.10.

Problems with large pixels

Some researchers choose to use quite large pixels, and apply logistic regression to the presence-

absence indicators. This leads to difficult problems related to the aggregation of points into geo-

graphical areas. These problems have been studied extensively in epidemiology and in ecological

and environmental statistics [253, 686, 682, 681]. Important questions include the equivalence of

models fitted using different pixel grids (the ‘modifiable area unit problem’ [529] or ‘change-of-

support’ [289, 76, 184]), the relation between discrete and continuous spatial models (‘ecological

fallacy’ [583]), and bias due to aggregation over pixels (‘ecological bias’ [681, 682] or aggregation

bias [207, 13]).

An unexpected finding in [34] is that it may be impossible to reconcile two spatial logistic

regression models that were fitted to the same spatial point pattern data using different pixel grids.

Two such models are logically incompatible except in simple cases. Perhaps the easiest way to

understand this is to remember that the pixels are artificial. If we fit a logistic regression using

pixels of a particular size, we are making an assumption about the underlying random process of

points in continuous space. If we now choose pixels of a different size, this corresponds to a different

assumption, and in general the two sets of assumptions are logically incompatible. There is no point

process in continuous space which satisfies a logistic regression model when it is discretised on any

pixel grid. The implication is that two research teams who apply spatial logistic regression to the

same data, but using different pixel sizes, may obtain results that cannot be reconciled.
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9.9.5 Implementation in spatstat

The spatstat package provides facilities for performing pixel logistic regression, mainly for teach-

ing and for methodological research. Models are fitted using the command slrm (for spatial logistic

regressionmodel, pronounced ‘SLURM’) with a syntax very similar to ppm.

> fit <- slrm(bei

~

grad, data=bei.extra)

> fit

Fitted spatial logisti regression model

Formula: bei

~

grad

<environment: 0xbbae28>

Fitted oeffiients:

(Interept) grad

-5.727 6.516

The result is a ‘fitted spatial logistic regression model’ object of class "slrm". Methods for this class

include print, plot, predit, oef, fitted, update, terms, formula, anova, and logLik.

Additionally step and AIC can be used for model selection.

We reiterate that slrm is designed for methodological research rather than day-to-day analysis.

For example, it helps to demonstrate that spatial logistic regression is equivalent to fitting a loglinear

Poisson point process [34].

9.10 Conditional logistic regression∗

This section describes an alternative strategy for fitting point process models to point pattern data.

Instead of using a dense grid of pixels or dummy points, we generate a smaller number of dummy

points at random locations. Given only the data at these (data plus dummy) locations, a loglinear

Poisson point process model becomes a logistic regression model, which we can fit using standard

software.

Although there is a loss of statistical efficiency (increase in variance of parameter estimates) due

to the sub-sampling, this method avoids some of the biases inherent in quadrature approximations,

so it may have better mean square error overall.

9.10.1 Connection between loglinear Poisson and logistic models

Statisticians will be familiar with the connection between loglinear Poisson regression models and

logistic models, for example in contingency tables. The basic principle is as follows.

Suppose X apples and Y oranges have fallen from the trees in an orchard, where X and Y

are independent, Poisson random variables with means µ and ν . Then the special properties of

the Poisson distribution imply various relationships. The total number of fruit X +Y is a Poisson

variable with mean µ + ν . Given that there are X +Y = n fruit in total, each fruit is either an

apple with probability p or an orange with probability 1− p, independently of other fruit, where

p = µ/(µ +ν).
Suppose the expected number of apples µ depends on a covariate z through a loglinear relation-

ship, logµ = a+bz, or equivalently, µ = ea+bz. Given there are n fruit in total, the probability that

each fruit is an apple is p = µ/(µ+ν) = ea+bz/(ea+bz+ν), and for an orange, 1− p = ν/(µ+ν) =
ν/(ea+bz+ν). The odds of an apple against an orange are p/(1− p) = ea+bz/ν so that the logarithm

∗ Starred sections contain advanced material, and can be skipped by most readers.
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of the odds is

log
p

1− p
= a+bz− logν .

That is, the probability p of an apple is related to the covariate z through a logistic regression

relationship. Thus, loglinear Poisson regression becomes logistic regression when we condition on

the total count.

9.10.2 Random dummy points and logistic regression

Assume, as before, that the data points come from a Poisson process X with intensity function

λθ(u) where θ is to be estimated. Suppose that we generate dummy points at random, according

to a Poisson process D with known intensity function δ (u) > 0, independently of the data points.

Combining these two types of points, the superposition Y= X∪D is again a Poisson point process

(by the superposition property, Section 5.3.3) with intensity function κ(u) = λθ(u)+δ (u). For each
point yi ∈ Y, let Ii = 1{yi ∈ X} be the indicator that equals 1 if yi was a data point, and 0 if it was a

dummy point.

Let us now condition on Y, so that we regard the points yi as fixed locations. The data now

consist only of the data/dummy indicators I1, . . . , Im where m = n(X)+ n(D) is the total number

of (data and dummy) points. Conditional on location, the indicators Ii are independent random

variables, with probabilities

P{Ii = 1}= pi =
λθ(yi)

λθ(yi)+δ (yi)
, P{Ii = 0}= 1− pi =

δ (yi)

λθ(yi)+δ (yi)

so that the odds are
P{Ii = 1}

P{Ii = 0}
=

pi

1− pi

=
λθ(yi)

δ (yi)
.

If the intensity of X is a loglinear function of the covariate, λθ(u) = exp(B(u)+θ⊤Z(u)), then the

log odds are

log
P{Ii = 1}

P{Ii = 0}
= B(yi)+θ

⊤Z(yi)− logδ (yi). (9.67)

The indicators Ii therefore satisfy a logistic regression. The loglikelihood given the data x and a

realisation d of the dummy process is

logL(θ;x,d) = ∑
i

Ii log(pi)+(1− Ii) log(1− pi)

= ∑
u∈x

log
λθ(u)

λθ(u)+δ (u)
+ ∑

u∈d

log
δ (u)

λθ(u)+δ (u)
. (9.68)

That is, if we treat the pattern of data and dummy points y = x∪ d as fixed locations, then the

maximum likelihood estimator of the parameters θ is obtained by fitting a logistic regression (9.67)

to the data/dummy indicators Ii.

This approach has many advantages. Estimation can be implemented straightforwardly using

standard software for generalised linear models. The loglikelihood (9.68) is a concave function of

θ, and conditions for existence and uniqueness of the maximum are well known [616], [38].

9.10.3 Pixel logistic regression with subsampled zero pixels

Another motivation for the same technique comes from pixel logistic regression (Section 9.9). As

noted in Section 9.9.4, a fine grid of pixels is needed in order to minimise bias, but this results in

a large volume of data, in which most of the presence-absence indicators are zero, causing compu-

tational and statistical problems. One strategy is to take a random sub-sample of the ‘zero pixels’
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(pixels with presence-absence indicator equal to zero). Suppose each zero-pixel is sampled with

probability s independently of other zero-pixels. Each pixel with the presence value 1 is retained. If

the data on the full pixel grid satisfy a logistic regression

log
p j

1− p j

= θ⊤z j

where p j is the presence probability for pixel j, then the subsampled data satisfy

log
p∗j

1− p∗j
= θ⊤z j − logs (9.69)

where p∗j is the presence probability for pixel j given that it has been sampled. Since s is a probabil-

ity, logs is negative, so the effect of subtracting logs is that the log odds of presence are increased

in the subsample, as we would expect.

In summary, if we discretise the point pattern data on a fine grid, set up the pixel presence-

absence indicators I j, then randomly subsample the zero pixels with retention probability s, a logistic

regression is appropriate, with adjustment for the sub-sampling probability as shown in (9.69).

9.10.4 Conditional logistic regression as a point process method

A pivotal question about conditional logistic regression is whether it is statistically reliable. Quadra-

ture methods use a fine grid of pixels or dummy points in an effort to achieve accurate approximation

of the likelihood of the Poisson process. However, random sampling can produce unbiased estimates

of the score using much fewer function evaluations, at the expense of increased variability due to

the randomisation.

Suppose x is a point pattern dataset, and d is a random pattern of dummy points which we have

generated with intensity function δ (u). Assume as usual that x is a realisation of a Poisson process

with loglinear intensity. The score is

U(θ;x,d) = ∑
u∈x

δ (u)Z(u)

λθ(u)+δ (u)
− ∑

u∈d

λθ(u)Z(u)

λθ(u)+δ (u)
. (9.70)

By Campbell’s formula (6.11) the expectation of the first sum in (9.70) over all outcomes of X is

E ∑
u∈X

δ (u)Z(u)

λθ(u)+δ (u)
= E

∫

W

λθ(u)δ (u)Z(u)

λθ(u)+δ (u)
du (9.71)

and for the second sum in (9.70) the expectation over all outcomes of D is

E ∑
u∈D

λθ(u,X)Z(u)

λθ(u,X)+δ (u)
= E

∫

W

λθ(u)δ (u)Z(u)

λθ(u)+δ (u)
du. (9.72)

It follows that EθU(θ;X,D) = 0 where the expectation is taken over both X and D. The logistic

score (9.70) is an unbiased estimating function. This implies that, under reasonable conditions, the

estimate of θ obtained from logistic regression is consistent and asymptotically normal [38].

If we rearrange (9.70) as

U(θ;x,d) = ∑
u∈x

Z(u)− ∑
u∈x∪d

λθ(u)

λθ(u)+δ (u)
Z(u) (9.73)

and apply Campbell’s formula to the last term in (9.73), we obtain

E ∑
u∈X∪D

λθ(u)

λθ(u)+δ (u)
Z(u) =

∫

W
Z(u)λθ(u)du. (9.74)
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Thus, if the last term in (9.73) is replaced by its expectation, the score of the full point process

likelihood is obtained. Hence the score of the conditional logistic regression may be viewed as a

Monte Carlo approximation of the full maximum likelihood score to which it converges (in mean

square) when infu∈W δ (u)→ ∞.

It is also possible to use dummy points generated by a point process other than a Poisson process,

with appropriate adjustments to the likelihood [38].

9.10.5 Implementation in spatstat

If ppm is called with the option method="logi", it will fit the point process model using conditional

logistic regression.

> fitM <- ppm(bei

~

grad, data=bei.extra)

> fitL <- ppm(bei

~

grad, data=bei.extra, method="logi")

> oef(fitM)

(Interept) grad

-5.391 5.022

> oef(fitL)

(Interept) grad

-5.415 5.294

Dummy points will be generated at random, by default, but can be generated in several ways, in-

cluding a deterministic grid. The default is a stratified random pattern, in which the window is

divided into equal tiles and each tile contains a fixed number of independent random points.

In the usual case where the left-hand side of the model formula is a point pattern X, the function

ppm will call quadsheme.logi(X) to assemble a ‘quadrature scheme’ object in which all data

and dummy points have weight equal to 1.

Alternatively the left-hand side of the model formula may be such a quadrature scheme which

the user has constructed by calling quadsheme.logi(X, ...). The user may provide the dummy

points by calling quadsheme.logi(X, D), but this would be unusual: normally they are gener-

ated randomly in quadsheme.logi (ultimately by calling dummy.logi) taking account of the

optional arguments dummytype, nd, and mark.repeat.

9.10.6 Logistic regression in case-control studies

In a spatial case-control study of disease we have two types of points: cases (people diagnosed with

the disease of interest) and controls (people who are similar to the cases except that they do not have

the disease).

Figure 1.12 on page 9 shows the Chorley-Ribble cancer data of Diggle [224] giving the residen-

tial locations of new cases of cancer of the larynx (58 cases) and cancer of the lung (978 cases) in

the Chorley and South Ribble Health Authority of Lancashire, England, between 1974 and 1983.

The location of a disused industrial incinerator is also given. The aim is to assess evidence for an

increase in the incidence of laryngeal cancer close to the incinerator. The lung cancer cases can

arguably be treated as ‘controls’, that is, as a sample from the susceptible population. Data analysis

in [224, 236, 55] concluded there is significant evidence of an incinerator effect.

Assume that the susceptible population has some unknown spatial density s(u) (people per

square kilometre). As explained in Section 9.3.7, the null model of constant risk assumes that

the cases are a Poisson process with intensity λ (u) = ρs(u) (cases per square kilometre) where ρ
is the disease risk per head of population. Common alternative models assume that the cases are

Poisson with intensity λ (u) = r(u,θ)s(u) where r(u,θ) is a spatially varying risk function.

Suppose we treat the locations yi of cases and controls as fixed, and consider only the disease
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status indicators, Ii = 1 if yi is a case and Ii = 0 if it is a control. Then, by the principle explained in

Section 9.10.2, the disease status indicators satisfy a binary regression

log
P{Ii = 1}

P{Ii = 0}
= log

pi

1− pi

= logr(yi,θ).

If the risk function r(u,θ) is loglinear in θ, the relationship is a logistic regression. This is a

well-known principle in epidemiology. Diggle and Rowlingson [236] argue the advantages of this

approach in a spatial context, which include not having to estimate the population density.

For the Chorley-Ribble dataset we can carry out such an analysis as follows:

> X <- split(horley)$larynx

> D <- split(horley)$lung

> inin <- as.ppp(horley.extra$inin, W = Window(horley))

> dinin <- distfun(inin)

> Q <- quadsheme.logi(X,D)

> fit <- ppm(Q

~

dinin)

For similar applications in forestry see [684, 145].

9.11 Approximate Bayesian inference

Recently Rajala [561] suggested using the conditional logistic regression likelihood as the basis

for approximate Bayesian inference for point process models. In this setup (9.68) is treated as the

true loglikelihood of the model and a multivariate Gaussian distribution is used as the prior for θ.

The corresponding posterior density is not easy to derive, but applying a tangential lower bound

to the log terms in (9.68) leads to a multivariate Gaussian distribution as a lower bound to the

posterior. The mean of this lower bound distribution is used as the parameter estimate. However,

the lower bound depends on so-called variational parameters and the estimate depends on how these

are chosen. The best variational parameters are the ones that maximise the lower bound since then

we are as close as possible to the true posterior distribution. In [561] the EM algorithm is used to

find this optimal choice of the variational parameters. Rajala’s code has been incorporated in ppm

as the method "VBlogi":

> fitVB <- ppm(bei

~

grad, data=bei.extra, method="VBlogi")

> oef(fitVB)

(Interept) grad

-5.417 5.305

The parameter estimates are very close to those obtained when method="logi" in Section 9.10.5.

However, the results depend on the chosen Gaussian prior distribution, which by default is chosen

to be somewhat ‘uninformative’. It is recommended to set the prior mean and variance-covariance

matrix explicitly, so that the dependence on the prior is more apparent. Suppose for example that

our prior belief is that the terrain slope (grad) should have very little effect on the abundance of

trees, while we have no strong prior knowledge about the intercept term (underlying abundance of

trees). It would be appropriate to take the prior mean of both parameters to be zero, with large prior

variance for the intercept parameter, and small prior variance for the coefficient of slope:

> fitVBp <- ppm(bei

~

grad, data=bei.extra,

prior.mean = (0,0), prior.var = diag((10000,0.01)))
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> oef(fitVBp)

(Interept) grad

-4.9794 0.5438

In this example our strong belief in the absence of a slope effect has substantially changed the

estimate for the slope coefficient.

At the time of writing it is not possible to calculate the posterior variance-covariance matrix

in spatstat, so there is currently no way to assess the uncertainty of this approximate Bayesian

estimate.

9.12 Non-loglinear models

This section covers methods for fitting a general (not loglinear) Poisson point process model. It

describes the model-fitting functions ippm (implementing Newton’s method for differentiable mod-

els) and profilepl (applying brute force estimation for general models, such as those involving a

threshold).

9.12.1 Profile likelihood

In many intensity models, some of the parameters appear in loglinear form, while other parameters

do not. Such a model is of the form

λθ(u) = exp(ϕ⊤Z(u,ψ)) (9.75)

where θ = (ϕ,ψ) is a partition of the entries of the parameter vector θ into regular parameters

ϕ which appear in loglinear form in (9.75) and irregular parameters ψ which do not appear in

loglinear form.

If we fix the values of the irregular parametersψ, then equation (9.75) is loglinear in the remain-

ing parameters ϕ. Considered as a model with parameters ϕ only, this is a loglinear Poisson point

process model, which can be fitted using the methods described in previous sections.

Thus, for any chosen value of ψ, the likelihood L(θ) = L(ϕ,ψ) can easily be maximised over

all possible values of ϕ, giving us the profile maximum likelihood estimate

ϕ̂(ψ) = argmaxϕL(ϕ,ψ). (9.76)

The achieved maximum value of the likelihood for a given value ofψ is called the profile likelihood:

pL(ψ) =max
ϕ

L(ϕ,ψ). (9.77)

The maximum likelihood estimate of θ can be obtained by maximising the profile likelihood over

ψ. That is, if ψ̂= argmaxψ pL(ψ) is the value of the irregular parameters that maximises the profile

likelihood, then θ̂ = (ϕ̂(ψ̂),ψ̂) is the maximum likelihood estimate of θ.

9.12.2 Maximising profile likelihood by brute force

A simple strategy for maximising the profile likelihood is to evaluate pL(ψ) at a grid of test values

of ψ and simply choose the value of ψ which yields the maximum.

The function profilepl performs this ‘brute force’ maximisation. Its syntax is
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profilepl(s, f, ...)

The argument s is a data frame containing values of the irregular parameters over which the profile

likelihood will be computed. The argument f should be set to Poisson for fitting Poisson processes.

Additional arguments ... are passed to ppm to fit the model.

For example, the nztrees dataset appears to have a line of trees (perhaps a planted avenue) at

right boundary. We fit a threshold model where the intensity is different on either side of the line

x = a. The threshold value a can be found using profilepl:

> thresh <- funtion(x,y,a) { x < a }

> df <- data.frame(a=1:152)

> nzfit <- profilepl(df, Poisson, nztrees

~

thresh, eps=0.5)

This calculation may take considerable time. The result, nzfit, is an object of class "profilepl".

Printing the object gives information about the fitting procedure, the fitted value of the irregular

parameter, and the fitted values of the regular parameters.

> nzfit

Profile log pseudolikelihood

for model: ppm(nztrees

~

thresh, eps = 0.5, interation = Poisson)

fitted with rbord = 0

Interation: Poisson proess

Irregular parameter: a in [1, 152℄

Optimum value of irregular parameter: a = 150

The plotmethod generates a plot of the profile likelihood, as shown in Figure 9.15. The plot shows

a clear preference for a threshold near the right-hand edge of the field. The optimal fitted model can

be extracted as as.ppm(nzfit).
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Figure 9.15. Profile likelihood for changepoint model of NZ Trees data.

Figure 9.15 shows the typical behaviour of profile likelihood in many applications. The profile

likelihood is not continuous as a function of the threshold parameter a: it has discrete jumps at the

values ai which coincide with the horizontal coordinates of data points. Between these jumps, the

profile likelihood is continuous and differentiable.

This is a simple instance of a changepoint model; the ‘significance’ of the threshold should

be assessed using specialised methods for changepoints [147]. The R package hangepoint may

help.
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9.12.3 Maximising profile likelihood by Newton’s method

9.12.3.1 Newton’s method

If the intensity function is differentiable with respect to the irregular parameters, then a more effi-

cient technique for maximisation is Newton’s method of root-finding, applied to the score. If λθ(u)
is differentiable with respect to (all components of) θ, the score is

U(θ;x) =
n

∑
i=1

zθ(xi)−

∫

W
zθ(u)λθ(u)du (9.78)

where zθ(u) = (∂/∂θ) logλθ(u), and the observed information is

H(θ̂;x) =−
n

∑
i=1

κ
θ̂
(xi)+

∫

W
κ
θ̂
(u)λ

θ̂
(u)du+

∫

W
z
θ̂
(u)z

θ̂
(u)⊤λ

θ̂
(u)du (9.79)

where κθ(u) = (∂/∂θ)zθ(u) = (∂ 2/∂θ2) logλθ(u). In the Newton-Raphson method we repeatedly

update our current estimate of θ by

θm+1 = θm −H(θm;x)
−1U(θm;x). (9.80)

In this case there is some asymptotic theory available for the statistical performance of the estimator

[205, sec. 4.5.2].

9.12.3.2 Implementation in spatstat

The spatstat function ippm performs the iterative maximisation (9.80). For example, consider a

Poisson point process with intensity function λ (u) at u such that

λ (u) = exp(α +βZ(u)) f (u,γ)

where α ,β ,γ are parameters to be estimated, Z(u) is a spatial covariate function, and f is some

known function. Then the parameters α ,β are called regular because they appear in a loglinear

form; the parameter γ is called irregular.

To fit this model using ippm, we specify the model formula in the usual way for ppm. Recall

that the right-hand side of the model formula is a representation of the log of the intensity. In the

above example the log intensity is

logλ (u) = α +βZ(u)+ log f (u,γ)

so the model above would be encoded with the trend formula
~

Z + offset(log(f)). Note that

the irregular part of the model is an offset term, which means that it is included in the log trend as it

is, without being multiplied by another regular parameter.

The optimisation runs faster if we specify the derivative of log f (u,γ) with respect to γ . We

call this the irregular score. To specify this, the user must write an R function that computes the

irregular score for any value of γ at any location (x,y).

Thus, to code such a problem, (1) the model formula should define the log intensity, with the

irregular part as an offset; (2) the argument start should be a list containing initial values of each

of the irregular parameters; and (3) the argument iSore, if provided, must be a list (with one entry

for each entry of start) of functions with arguments x,y,..., that evaluate the partial derivatives

of log f (u,γ) with respect to each irregular parameter. An example is given below.

For a general concave loglikelihood, with arbitrary data, the existence and uniqueness of the

maximum likelihood estimate (MLE) are not guaranteed, and depend on the absence of ‘directions

of recession’ [584, 697, 616, 10, 282].
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9.12.3.3 Incinerator effect in Chorley-Ribble data

The Chorley-Ribble data (Figure 1.12 on page 9) were discussed in Sections 9.3.7 and 9.10.6.

> lung <- split(horley)$lung

> larynx <- split(horley)$larynx

> Q <- quadsheme(larynx, eps=0.1)

Here we follow Diggle [224] in treating the cases of laryngeal cancer as the response, and taking the

lung cancers as a covariate. We apply kernel smoothing [222] to the lung cancer locations to obtain

an unnormalised estimate ρ of the spatially varying population density of susceptibles, shown in

Figure 9.8 on page 321. This approach is open to critique [224, 236, 55] but is shown here for

demonstration purposes.

> smo <- density(lung, sigma=0.15, eps=0.1)

> smo <- eval.im(pmax(smo, 1e-10))

The null model, of ‘constant relative risk’, postulates that the larynx cases are a Poisson process

with intensity λ (u) = κ ρ(u) at location u. The parameter κ adjusts for the relative abundance of

the two types of data points; it is the baseline relative risk of larynx and lung cancer, multiplied by

the ratio of sampling fractions used when these data were sampled from the cancer registry. This

could be used to infer the absolute risk of laryngeal cancer if these sampling fractions were known.

We fit the null model:

> ppm(Q

~

offset(log(smo)))

The fitted coefficient (Interept)=-2.824 is the estimate of logκ .
In Section 10.5.2 we advocated using the Kolmogorov-Smirnov test or similar tests (Anderson-

Darling, Berman-Lawson-Waller) to decide whether a point process depends on a covariate. How-

ever in this context, where the covariate is the distance from a fixed point and the alternative is that

very small distance values are overrepresented, these tests have weak power, because the null and

alternative differ only for a small range of distance values. A parametric modelling approach is

more powerful in this context.

Diggle [224] considered alternative ‘raised incidence’ models that include an effect due to prox-

imity to the incinerator. Assume the intensity of laryngeal cancer cases at a location u is

λθ(u) = κ ρ(u) bα ,β (d(u)) (9.81)

where d(u) is the distance in kilometres to the incinerator from location u. Here θ = (κ ,α ,β ) is the
parameter vector and

bα ,β (d) = 1+α exp(−βd2) (9.82)

is the raised risk ratio at a distance d from the incinerator [224, eq. (6)]. The parameters α ,β control

the magnitude and dropoff rate, respectively, of the incinerator effect. The log intensity is

logλθ(u) = logκ + logρ(u)+ log(1+α exp(−βd2)); (9.83)

this is not a linear function of the parameters α and β , so these parameters are irregular, and we need

to use another algorithm such as ippm or profilepl to fit the model. Since (9.82) is differentiable

with respect to α and β , we can use ippm.
We start by defining the squared distance to the incinerator, as this function will be re-used

frequently.

> d2inin <- funtion(x, y, xinin=354.5, yinin=413.6) {

(x - xinin)^2 + (y - yinin)^2

}



SA
M
PL
E

364 Spatial Point Patterns: Methodology and Applications with R

The arguments xinin,yinin are the coordinates of the incinerator. By specifying default values

for them, we do not have to handle these values again. Next we define the raised incidence term

bθ(u):

> raisin <- funtion(x,y, alpha, beta) {

1 + alpha * exp( - beta * d2inin(x,y))

}

We then fit the model using ippm (this can be slow):

> horleyDfit <- ippm(Q

~

offset(log(smo) + log(raisin)),

start=list(alpha=5, beta=1))

The argument start lists the irregular parameters over which the likelihood is to be maximised,

and gives their starting values for the iterative algorithm. The parameter names should match the

names of arguments of the function raisin. As intended, the arguments xinin, yinin are held

fixed, because they are not listed in start.

> horleyDfit

Nonstationary Poisson proess

Log intensity:

~

offset(log(smo) + log(raisin))

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Interept) -2.896 0.1313 -3.153 -2.638 *** -22.05

The MLE’s are α̂ = 22.2 (dimensionless) and β̂ = 0.89km−1. The spatstat generic function

parameters can be used to extract all the model parameters, including both regular and irregular

trend parameters:

> unlist(parameters(horleyDfit))

trend.(Interept) alpha beta

-2.8958 22.2410 0.8892

Note that the iterative maximisation procedure can fail to converge, because the parameters do not

appear in loglinear form and the log-likelihood may not be a convex function. In principle there

could even be several different maxima of the likelihood. Tweaking the arguments passed to the

optimisation function nlm usually sidesteps these problems.

9.13 Local likelihood

In local likelihood inference [335, 428] or geographically weighted regression [267], the model pa-

rameters are allowed to be spatially varying. More precisely, we start with a homogeneous model; at

each spatial location u we fit the same model to data in a neighbourhood of u, obtaining a parameter

estimate θ̂(u) that will vary between locations.

Suppose we define the neighbourhood of location u as the disc b(u,R) centred at u, with some

fixed radius R. At each location u we would fit a model to the data inside b(u,R), obtaining a

parameter estimate θ̂(u). As we move the disc over the study region, the fitted parameter values

will change. This is reminiscent of the scan statistic (page 190).

Instead of including or excluding data according to whether they fall inside or outside a disc, we

could weight the data using a smoothing kernel κ . For a Poisson point process model with intensity

λθ(u), the local log likelihood or geographically weighted likelihood at location u is

logLu(θ) =
n

∑
i=1

κ(u− xi) logλθ(xi)−
∫

W
κ(u− v)λθ(v)dv. (9.84)
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For each location u, the local log likelihood can be maximised using the same techniques as for the

original likelihood, yielding a parameter estimate θ̂(u).
Code for local likelihood [33] will be added to spatstat soon. The fitting function is loppm.

For the Queensland copper data:

> X <- rotate(opper$Points, pi/2)

> L <- rotate(opper$Lines, pi/2)

> D <- distfun(L)

> opfit <- loppm(X

~

D, eps=1.5, sigma=bw.loppm)

Here the smoothing bandwith σ was selected by cross-validation.
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Figure 9.16. Spatially varying estimates of intercept (Left) and slope coefficient (Right) from the

local likelihood fit of the loglinear model to the Queensland copper data.

Figure 9.16 is the result of plot(opfit), showing the spatially varying fitted estimates α̂(u),

β̂ (u) of the intercept parameter α and slope parameter β in the loglinear model λ (u) = exp(α +
βd(u)) where d(u) is the distance function of the geological lineaments. The estimates of β are

close to zero, suggesting a weak relationship, across most of the survey area.
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Figure 9.17. Fitted intensity of copper deposits according to the local likelihood fit of the loglinear

model.

Figure 9.17 shows the fitted intensity λ̂ (u) = exp(α̂(u)+ β̂(u)d(u)) of each local model. This

strongly suggests there is a higher intensity of copper deposits in the middle of the survey region.
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Figure 9.17 is very similar to the picture that would be obtained simply by kernel smoothing the

copper deposits without reference to the lineament pattern. However, the top left of Figure 9.17

shows an area where the predicted intensity under the local model is higher than the kernel-smoothed

intensity, because of an apparent association between copper and lineaments in that area.

9.14 FAQ

• How accurate are the parameter estimates computed by ppm ?

This depends on the algorithm settings such as the number of quadrature points, the quadrature

weighting method, and the choice of fitting algorithm. See [53, 38] for detailed measurements of

accuracy and bias.

The default settings are chosen to achieve speed rather than high accuracy, and are suitable for

initial analysis. (High speed is a requirement of the R package checker.) For accurate or definitive

analysis, a larger number of quadrature points should be used, by setting the argument nd or eps

in ppm, or by setting spatstat.options("ndummy.min").

• I get different parameter estimates from different versions of spatstat.

Later versions of spatstat typically give more accurate results. Progressive increases in compu-

tational efficiency allow us to change the default settings of ppm to increase accuracy.

To ensure that calculations are exactly reproducible, the algorithm parameters would have to be

fixed explicitly. In ppm this means the arguments method and orretion, and a specification

of the quadrature scheme, such as the arguments nd and nt.

• Does ppm take account of correlation and confounding between the covariates?

Like most regression techniques, ppm treats the covariates as non-random quantities that are mea-

sured without error. The covariates do not have ‘correlation’ in the statistical sense. Any empirical

correlation between the covariates is taken into account when calculating the variance-covariance

matrix (vov.ppm), when performing the likelihood ratio test (anova.ppm), and so on. If the

covariates are confounded in the sense that they are approximately linearly related, the Fisher

information matrix will be singular or ill-conditioned, and an error or warning will occur.

• When I perform pixel logistic regression using slrm, the fitted presence probabilities in each pixel

are tiny numbers like 10−8. Is this physically meaningful?

Yes. The pixels are tiny, so the probability that a point falls in a given pixel is tiny. In any

spatial region of appreciable size, the expected number of points is the sum of the pixel presence

probabilities, a sum of a very large number of very small values, yielding a physically meaningful

probability. The chance that I win the lottery is tiny; the chance that someone wins the lottery is

high.

• Is it true that a logistic regression model does not assume independence between pixels?

The simplest answer is that standard application of logistic regression gives the same result as if

we had assumed independence between pixels.

The logistic regression relationship log(p/(1− p)) = β0 + β1x itself does not assume indepen-

dence between pixels. However, in order to fit a regression model, we must also describe the

probability distribution of the observations, including the dependence between them. The standard

‘logistic regression model’ does assume that observations are independent. More importantly, the

standard algorithm for fitting a logistic regression assumes independence between pixels (since
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the correlation structure determines the Fisher information matrix which is used in the Iteratively

Reweighted Least Squares algorithm).

A logistic regression relationship can still be fitted if we assume some kind of dependence between

pixels. However, the fitting algorithm must be adjusted to incorporate this dependence. See

Chapter 12.

• I want to fit a model where the intensity depends on a covariate Z. I don’t want to make any restric-

tive assumptions about the relationship between intensity and Z. As I understand it, a loglinear

Poisson point process model is a very specific parametric model, whereas logistic regression and

Maxent are flexible non-parametric models. Can you confirm this?

Fitting a loglinear Poisson process model using ppm is equivalent to fitting a spatial (pixel) logistic

regression model [34, 691], and also equivalent to fitting a Maxent model [568]. If mathematical

proofs don’t convince you, try comparing the results of ppm and slrm, or look at the examples in

[34, 691, 568, 567].

Fitting loglinear Poisson models (or equivalently fitting spatial logistic regressions or fitting Max-

ent models) is quite a flexible approach, because we are allowed to build models using any trans-

formation of the original covariates. For example, we can easily fit a model in which the log

intensity is a cubic function of the covariate Z. The limitation is that the user must specify the

transformed covariates.

If you believe that λ (u) depends only on the covariate Z(u), then the best place to start is a

truly non-parametric estimator based on smoothing, such as rhohat (Section 6.6.3). Plotting the

estimated relationship may suggest the form of a model which can then be fitted using ppm.

Very flexible regression relationships can also be fitted using generalised additive models as ex-

plained in Section 9.6. This also works when there are several covariates.

• How do I obtain standard errors for the estimates of irregular parameters fitted by ippm or

profilepl?

At the time of writing, the only generally-applicable technique is a bootstrap approach in which

the model is re-fitted to simulated realisations from the model, and the sample standard deviation

of the parameter estimates is computed. A code snippet is available at www.spatstat.org.



SA
M
PL
E

368 Spatial Point Patterns: Methodology and Applications with R


